DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In Situ Observation of Single-Phase Lithium Intercalation in Sub-25-nm Nanoparticles

Abstract

Although a non-equilibrium single-phase reaction, with the absence of nucleation and growth of a second phase, is believed to be a key factor for high-rate performance of lithium-ion batteries, it is thermodynamically unfavorable and usually proceeds in electrode materials with small particle sizes (tens of nanometers). Unfortunately, the phase evolutions inside such small particles are often shrouded by the macroscopic inhomogeneous reactions of electrodes containing millions of particles, leading to intensive debate over the size-dependent microscopic reaction mechanisms. Here, we provide a generally applicable methodology based on in-situ electron diffraction study on a multi-particle system to track the lithiation pathways in individual nanoparticles, and unambiguously reveal that lithiation of anatase TiO2, previously long believed to be biphasic, converts to a single-phase reaction when the particle size is below ~25 nm. Our results imply the prevalence of such a size-dependent transition in lithiation mechanism among intercalation compounds whose lithium miscibility gaps are associated with a prominent size effect, and therefore provide important guidelines for designing high-power electrodes, especially cathodes.

Authors:
 [1];  [2];  [3];  [4];  [1]
  1. Univ. of Pittsburgh, PA (United States). Dept. of Mechanical Engineering and Materials Science
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies
  3. Zhejiang Univ., Hangzhou (China). School of Materials Science and Engineering
  4. Yanshan Univ., Qin Huang Dao, Hebei Province (China). Nano Energy Center, State Key Lab. of Metastable Materials Science and Technology
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1399872
Alternate Identifier(s):
OSTI ID: 1401791
Report Number(s):
SAND-2016-7630J
Journal ID: ISSN 0935-9648; 646434; TRN: US1702855
Grant/Contract Number:  
AC04-94AL85000; SC0001160; DESC0001160
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Volume: 29; Journal Issue: 26; Journal ID: ISSN 0935-9648
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; multiparticle systems; single-phase Li+ intercalation; size-dependent lithiation pathway

Citation Formats

Zhong, Li, Liu, Yang, Han, Wei-Qiang, Huang, Jian Yu, and Mao, Scott X. In Situ Observation of Single-Phase Lithium Intercalation in Sub-25-nm Nanoparticles. United States: N. p., 2017. Web. doi:10.1002/adma.201700236.
Zhong, Li, Liu, Yang, Han, Wei-Qiang, Huang, Jian Yu, & Mao, Scott X. In Situ Observation of Single-Phase Lithium Intercalation in Sub-25-nm Nanoparticles. United States. https://doi.org/10.1002/adma.201700236
Zhong, Li, Liu, Yang, Han, Wei-Qiang, Huang, Jian Yu, and Mao, Scott X. Fri . "In Situ Observation of Single-Phase Lithium Intercalation in Sub-25-nm Nanoparticles". United States. https://doi.org/10.1002/adma.201700236. https://www.osti.gov/servlets/purl/1399872.
@article{osti_1399872,
title = {In Situ Observation of Single-Phase Lithium Intercalation in Sub-25-nm Nanoparticles},
author = {Zhong, Li and Liu, Yang and Han, Wei-Qiang and Huang, Jian Yu and Mao, Scott X.},
abstractNote = {Although a non-equilibrium single-phase reaction, with the absence of nucleation and growth of a second phase, is believed to be a key factor for high-rate performance of lithium-ion batteries, it is thermodynamically unfavorable and usually proceeds in electrode materials with small particle sizes (tens of nanometers). Unfortunately, the phase evolutions inside such small particles are often shrouded by the macroscopic inhomogeneous reactions of electrodes containing millions of particles, leading to intensive debate over the size-dependent microscopic reaction mechanisms. Here, we provide a generally applicable methodology based on in-situ electron diffraction study on a multi-particle system to track the lithiation pathways in individual nanoparticles, and unambiguously reveal that lithiation of anatase TiO2, previously long believed to be biphasic, converts to a single-phase reaction when the particle size is below ~25 nm. Our results imply the prevalence of such a size-dependent transition in lithiation mechanism among intercalation compounds whose lithium miscibility gaps are associated with a prominent size effect, and therefore provide important guidelines for designing high-power electrodes, especially cathodes.},
doi = {10.1002/adma.201700236},
journal = {Advanced Materials},
number = 26,
volume = 29,
place = {United States},
year = {Fri May 05 00:00:00 EDT 2017},
month = {Fri May 05 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Kinetics of Anatase Electrodes: The Role of Ordering, Anisotropy, and Shape Memory Effects
journal, July 2012

  • Belak, Anna A.; Wang, Yizhou; Van der Ven, Anton
  • Chemistry of Materials, Vol. 24, Issue 15
  • DOI: 10.1021/cm300881t

Probing three-dimensional sodiation–desodiation equilibrium in sodium-ion batteries by in situ hard X-ray nanotomography
journal, June 2015

  • Wang, Jiajun; Eng, Christopher; Chen-Wiegart, Yu-chen Karen
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8496

Properties and Promises of Nanosized Insertion Materials for Li-Ion Batteries
journal, February 2012

  • Wagemaker, Marnix; Mulder, Fokko M.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar2001793

Electrochemical and Photoelectrochemical Investigation of Single-Crystal Anatase
journal, January 1996

  • Kavan, L.; Grätzel, M.; Gilbert, S. E.
  • Journal of the American Chemical Society, Vol. 118, Issue 28
  • DOI: 10.1021/ja954172l

Multiple Li Positions inside Oxygen Octahedra in Lithiated TiO 2 Anatase
journal, January 2003

  • Wagemaker, Marnix; Kearley, Gordon J.; van Well, Ad A.
  • Journal of the American Chemical Society, Vol. 125, Issue 3
  • DOI: 10.1021/ja028165q

Room-temperature miscibility gap in LixFePO4
journal, April 2006

  • Yamada, Atsuo; Koizumi, Hiroshi; Nishimura, Shin-ichi
  • Nature Materials, Vol. 5, Issue 5
  • DOI: 10.1038/nmat1634

Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4
journal, July 2008

  • Gibot, Pierre; Casas-Cabanas, Montse; Laffont, Lydia
  • Nature Materials, Vol. 7, Issue 9
  • DOI: 10.1038/nmat2245

Anisotropic Phase Boundary Morphology in Nanoscale Olivine Electrode Particles
journal, February 2011

  • Tang, Ming; Belak, James F.; Dorr, Milo R.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 11
  • DOI: 10.1021/jp109628m

Dichotomy in the Lithiation Pathway of Ellipsoidal and Platelet LiFePO 4 Particles Revealed through Nanoscale Operando State-of-Charge Imaging
journal, May 2015

  • Li, Yiyang; Weker, Johanna Nelson; Gent, William E.
  • Advanced Functional Materials, Vol. 25, Issue 24
  • DOI: 10.1002/adfm.201500286

Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review
journal, July 2009


The Influence of Size on Phase Morphology and Li-Ion Mobility in Nanosized Lithiated Anatase TiO2
journal, February 2007

  • Wagemaker, Marnix; Borghols, Wouter J. H.; van Eck, Ernst R. H.
  • Chemistry - A European Journal, Vol. 13, Issue 7
  • DOI: 10.1002/chem.200600803

Two Phase Morphology Limits Lithium Diffusion in TiO 2 (Anatase):  A 7 Li MAS NMR Study
journal, November 2001

  • Wagemaker, Marnix; van de Krol, Roel; Kentgens, Arno P. M.
  • Journal of the American Chemical Society, Vol. 123, Issue 46
  • DOI: 10.1021/ja0161148

Coherency Strain and the Kinetics of Phase Separation in LiFePO 4 Nanoparticles
journal, February 2012

  • Cogswell, Daniel A.; Bazant, Martin Z.
  • ACS Nano, Vol. 6, Issue 3
  • DOI: 10.1021/nn204177u

Kinetics of non-equilibrium lithium incorporation in LiFePO4
journal, July 2011

  • Malik, Rahul; Zhou, Fei; Ceder, G.
  • Nature Materials, Vol. 10, Issue 8
  • DOI: 10.1038/nmat3065

Suppression of Phase Separation in LiFePO 4 Nanoparticles During Battery Discharge
journal, November 2011

  • Bai, Peng; Cogswell, Daniel A.; Bazant, Martin Z.
  • Nano Letters, Vol. 11, Issue 11
  • DOI: 10.1021/nl202764f

Large Impact of Particle Size on Insertion Reactions. A Case for Anatase Li x TiO 2
journal, April 2007

  • Wagemaker, Marnix; Borghols, Wouter J. H.; Mulder, Fokko M.
  • Journal of the American Chemical Society, Vol. 129, Issue 14
  • DOI: 10.1021/ja067733p

Intercalation Complexes of Lewis Bases and Layered Sulfides: A Large Class of New Superconductors
journal, October 1971


A Critical Review of the Li Insertion Mechanisms in LiFePO 4 Electrodes
journal, January 2013

  • Malik, Rahul; Abdellahi, Aziz; Ceder, Gerbrand
  • Journal of The Electrochemical Society, Vol. 160, Issue 5
  • DOI: 10.1149/2.029305jes

Electrochemical lithium insertion into anatase-type TiO2: An in situ Raman microscopy investigation
journal, May 2007


Kinetic Study of the Electrochemical FePO 4 to LiFePO 4 Phase Transition
journal, April 2007

  • Allen, Jan L.; Jow, T. Richard; Wolfenstine, Jeffrey
  • Chemistry of Materials, Vol. 19, Issue 8
  • DOI: 10.1021/cm062963o

The thermodynamic stability of intermediate solid solutions in LiFePO 4 nanoparticles
journal, January 2016

  • Abdellahi, A.; Akyildiz, O.; Malik, R.
  • Journal of Materials Chemistry A, Vol. 4, Issue 15
  • DOI: 10.1039/C5TA10498J

Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries
journal, June 1996

  • Armstrong, A. Robert; Bruce, Peter G.
  • Nature, Vol. 381, Issue 6582
  • DOI: 10.1038/381499a0

Li + Ion Insertion in TiO 2 (Anatase). 1. Chronoamperometry on CVD Films and Nanoporous Films
journal, September 1997

  • Lindström, Henrik; Södergren, Sven; Solbrand, Anita
  • The Journal of Physical Chemistry B, Vol. 101, Issue 39
  • DOI: 10.1021/jp970489r

Phase separation and charge localization in UHV-lithiated anatase Ti O 2 nanoparticles
journal, June 2005


Impact of Particle Size on the Non-Equilibrium Phase Transition of Lithium-Inserted Anatase TiO 2
journal, February 2014

  • Shen, Kun; Chen, Hao; Klaver, Frits
  • Chemistry of Materials, Vol. 26, Issue 4
  • DOI: 10.1021/cm4037346

Lithium Insertion into Anatase Nanotubes
journal, November 2012

  • Gentili, V.; Brutti, S.; Hardwick, L. J.
  • Chemistry of Materials, Vol. 24, Issue 22
  • DOI: 10.1021/cm302912f

Suppression of Phase Transition in LiTb 0.01 Mn 1.99 O 4 Cathodes with Fast Li + Diffusion
journal, November 2012

  • Lee, Dong Kyu; Han, Su Chul; Ahn, Docheon
  • ACS Applied Materials & Interfaces, Vol. 4, Issue 12
  • DOI: 10.1021/am302003r

In Situ Observation of Random Solid Solution Zone in LiFePO 4 Electrode
journal, June 2014

  • Niu, Junjie; Kushima, Akihiro; Qian, Xiaofeng
  • Nano Letters, Vol. 14, Issue 7
  • DOI: 10.1021/nl501415b

Effect of Diffusion on Lithium Intercalation in Titanium Dioxide
journal, February 2001

  • Koudriachova, Marina V.; Harrison, Nicholas M.; de Leeuw, Simon W.
  • Physical Review Letters, Vol. 86, Issue 7
  • DOI: 10.1103/PhysRevLett.86.1275

Anatase as a cathode material in lithium—organic electrolyte rechargeable batteries
journal, December 1981


Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries
journal, April 1997

  • Padhi, A. K.
  • Journal of The Electrochemical Society, Vol. 144, Issue 4, p. 1188-1194
  • DOI: 10.1149/1.1837571

In Situ Transmission Electron Microscopy Observations of Electrochemical Oxidation of Li 2 O 2
journal, April 2013

  • Zhong, Li; Mitchell, Robert R.; Liu, Yang
  • Nano Letters, Vol. 13, Issue 5
  • DOI: 10.1021/nl400731w

Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode
journal, March 2007


Size-Dependent Lithium Miscibility Gap in Nanoscale Li[sub 1−x]FePO[sub 4]
journal, January 2007

  • Meethong, Nonglak; Huang, Hsiao-Ying Shadow; Carter, W. Craig
  • Electrochemical and Solid-State Letters, Vol. 10, Issue 5
  • DOI: 10.1149/1.2710960

In Situ Structural Changes upon Electrochemical Lithium Insertion in Nanosized Anatase TiO 2
journal, December 2009

  • Lafont, U.; Carta, D.; Mountjoy, G.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 2
  • DOI: 10.1021/jp908786t

Direct observation of lithium-ion transport under an electrical field in LixCoO2 nanograins
journal, January 2013

  • Zhu, Xiaojian; Ong, Chin Shen; Xu, Xiaoxiong
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01084

Evidence of Two-Phase Formation upon Lithium Insertion into the Li[sub 1.33]Ti[sub 1.67]O[sub 4] Spinel
journal, January 1999

  • Scharner, S.
  • Journal of The Electrochemical Society, Vol. 146, Issue 3
  • DOI: 10.1149/1.1391692

Nonequilibrium Pathways during Electrochemical Phase Transformations in Single Crystals Revealed by Dynamic Chemical Imaging at Nanoscale Resolution
journal, December 2014

  • Yu, Young-Sang; Kim, Chunjoong; Liu, Yijin
  • Advanced Energy Materials, Vol. 5, Issue 7
  • DOI: 10.1002/aenm.201402040

Nano-morphology of lithiated thin film TiO2 anatase probed with in situ neutron reflectometry
journal, August 2003


Emerging In Situ and Operando Nanoscale X-Ray Imaging Techniques for Energy Storage Materials
journal, February 2015

  • Nelson Weker, Johanna; Toney, Michael F.
  • Advanced Functional Materials, Vol. 25, Issue 11
  • DOI: 10.1002/adfm.201403409

A Kinetic Two-Phase and Equilibrium Solid Solution in Spinel Li4+xTi5O12
journal, December 2006

  • Wagemaker, M.; Simon, D. R.; Kelder, E. M.
  • Advanced Materials, Vol. 18, Issue 23
  • DOI: 10.1002/adma.200601636

Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy
journal, May 2016

  • He, Kai; Zhang, Sen; Li, Jing
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11441

Anisotropic Swelling and Fracture of Silicon Nanowires during Lithiation
journal, August 2011

  • Liu, Xiao Hua; Zheng, He; Zhong, Li
  • Nano Letters, Vol. 11, Issue 8, p. 3312-3318
  • DOI: 10.1021/nl201684d

Strain Accommodation during Phase Transformations in Olivine-Based Cathodes as a Materials Selection Criterion for High-Power Rechargeable Batteries
journal, March 2007

  • Meethong, N.; Huang, H. -Y. S.; Speakman, S. A.
  • Advanced Functional Materials, Vol. 17, Issue 7
  • DOI: 10.1002/adfm.200600938

Dynamic Solubility Limits in Nanosized Olivine LiFePO 4
journal, July 2011

  • Wagemaker, Marnix; Singh, Deepak P.; Borghols, Wouter J. H.
  • Journal of the American Chemical Society, Vol. 133, Issue 26
  • DOI: 10.1021/ja2026213

Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase
journal, July 2002

  • Wagemaker, M.; Kentgens, A. P. M.; Mulder, F. M.
  • Nature, Vol. 418, Issue 6896
  • DOI: 10.1038/nature00901

Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model
journal, July 2008

  • Delmas, C.; Maccario, M.; Croguennec, L.
  • Nature Materials, Vol. 7, Issue 8
  • DOI: 10.1038/nmat2230

Electrical Energy Storage and Intercalation Chemistry
journal, June 1976


Enhanced Optical Absorption Induced by Dense Nanocavities inside Titania Nanorods
journal, September 2007


Role of Lithium Ordering in the Li x TiO 2 Anatase → Titanate Phase Transition
journal, June 2011

  • Morgan, Benjamin J.; Watson, Graeme W.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 14
  • DOI: 10.1021/jz200718e

Electrochemistry of anatase titanium dioxide in lithium nonaqueous cells
journal, January 1985


Evidence of Solid-Solution Reaction upon Lithium Insertion into Cryptomelane K 0.25 Mn 2 O 4 Material
journal, February 2014

  • Pang, Wei Kong; Peterson, Vanessa K.; Sharma, Neeraj
  • The Journal of Physical Chemistry C, Vol. 118, Issue 8
  • DOI: 10.1021/jp411687n

Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes
journal, June 2014


Intercalation Pathway in Many-Particle LiFePO 4 Electrode Revealed by Nanoscale State-of-Charge Mapping
journal, February 2013

  • Chueh, William C.; El Gabaly, Farid; Sugar, Joshua D.
  • Nano Letters, Vol. 13, Issue 3
  • DOI: 10.1021/nl3031899

Surfactant-Templated TiO 2 (Anatase):  Characteristic Features of Lithium Insertion Electrochemistry in Organized Nanostructures
journal, December 2000

  • Kavan, Ladislav; Rathouský, Jiří; Grätzel, Michael
  • The Journal of Physical Chemistry B, Vol. 104, Issue 50
  • DOI: 10.1021/jp003609v

In Situ Atomic-Scale Imaging of Phase Boundary Migration in FePO 4 Microparticles During Electrochemical Lithiation
journal, July 2013


Atomistic Conversion Reaction Mechanism of WO 3 in Secondary Ion Batteries of Li, Na, and Ca
journal, April 2016

  • He, Yang; Gu, Meng; Xiao, Haiyan
  • Angewandte Chemie International Edition, Vol. 55, Issue 21
  • DOI: 10.1002/anie.201601542

The thermodynamic origin of hysteresis in insertion batteries
journal, April 2010

  • Dreyer, Wolfgang; Jamnik, Janko; Guhlke, Clemens
  • Nature Materials, Vol. 9, Issue 5
  • DOI: 10.1038/nmat2730

Direct Evidence of Concurrent Solid-Solution and Two-Phase Reactions and the Nonequilibrium Structural Evolution of LiFePO 4
journal, April 2012

  • Sharma, Neeraj; Guo, Xianwei; Du, Guodong
  • Journal of the American Chemical Society, Vol. 134, Issue 18
  • DOI: 10.1021/ja301187u

Multiple-Stripe Lithiation Mechanism of Individual SnO 2 Nanowires in a Flooding Geometry
journal, June 2011


Carbon-coated Magnéli-phase TinO2n−1 nanobelts as anodes for Li-ion batteries and hybrid electrochemical cells
journal, December 2010

  • Han, Wei-Qiang; Wang, Xiao-Liang
  • Applied Physics Letters, Vol. 97, Issue 24
  • DOI: 10.1063/1.3525369

Electrochemical Performance and Delithiation/Lithiation Characteristics of Mixed LiFe 1- y M y PO 4 ( M = Co, Ni) Electrode Materials
journal, January 2015

  • Jalkanen, K.; Karppinen, M.
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0791514jes

Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries
journal, June 2003


Lithium insertion in different TiO2 modifications
journal, September 1988


Particle Size Effect of Anatase TiO[sub 2] Nanocrystals for Lithium-Ion Batteries
journal, January 2011

  • Kang, J. W.; Kim, D. H.; Mathew, V.
  • Journal of The Electrochemical Society, Vol. 158, Issue 2
  • DOI: 10.1149/1.3518420

In Situ X-Ray Diffraction of Lithium Intercalation in Nanostructured and Thin Film Anatase TiO[sub 2]
journal, January 1999

  • van de Krol, Roel
  • Journal of The Electrochemical Society, Vol. 146, Issue 9
  • DOI: 10.1149/1.1392447

Twin Boundary-Assisted Lithium Ion Transport
journal, December 2014

  • Nie, Anmin; Gan, Li-Yong; Cheng, Yingchun
  • Nano Letters, Vol. 15, Issue 1
  • DOI: 10.1021/nl504087z

LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density
journal, June 1980


Phase evolution in single-crystalline LiFePO4 followed by in situ scanning X-ray microscopy of a micrometre-sized battery
journal, January 2015

  • Ohmer, Nils; Fenk, Bernhard; Samuelis, Dominik
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7045

The crystal structures of the lithium-inserted metal oxides Li0.5TiO2 anatase, LiTi2O4 spinel, and Li2Ti2O4
journal, June 1984


In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy
journal, August 2014

  • Wang, Jiajun; Chen-Wiegart, Yu-chen Karen; Wang, Jun
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5570

Works referencing / citing this record:

Review of Recent Development of In Situ/Operando Characterization Techniques for Lithium Battery Research
journal, May 2019

  • Liu, Dongqing; Shadike, Zulipiya; Lin, Ruoqian
  • Advanced Materials, Vol. 31, Issue 28
  • DOI: 10.1002/adma.201806620

Atomic-Scale Monitoring of Electrode Materials in Lithium-Ion Batteries using In Situ Transmission Electron Microscopy
journal, October 2017

  • Shang, Tongtong; Wen, Yuren; Xiao, Dongdong
  • Advanced Energy Materials, Vol. 7, Issue 23
  • DOI: 10.1002/aenm.201700709

Three-dimensional atomic-scale observation of structural evolution of cathode material in a working all-solid-state battery
journal, August 2018


A new strategy for the construction of 3D TiO 2 nanowires/reduced graphene oxide for high-performance lithium/sodium batteries
journal, January 2018

  • Yu, Jiage; Huang, Hui; Gan, Yongping
  • Journal of Materials Chemistry A, Vol. 6, Issue 47
  • DOI: 10.1039/c8ta08214f

Liquid cell transmission electron microscopy and its applications
journal, January 2020

  • Pu, Shengda; Gong, Chen; Robertson, Alex W.
  • Royal Society Open Science, Vol. 7, Issue 1
  • DOI: 10.1098/rsos.191204

Three-dimensional atomic-scale observation of structural evolution of cathode material in a working all-solid-state battery
journal, August 2018