DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Photoelectrochemical NADH Regeneration using Pt-Modified p -GaAs Semiconductor Electrodes

Abstract

Abstract Cofactor regeneration in enzymatic reductions is crucial for the application of enzymes to both biological and energy‐related catalysis. Specifically, regenerating NADH from NAD + is of great interest, and using electrochemistry to achieve this end is considered a promising option. Here, we report the first example of photoelectrochemical NADH regeneration at the illuminated (λ>600 nm), metal‐modified, p ‐type semiconductor electrode Pt/ p ‐GaAs. Although bare p ‐GaAs electrodes produce only enzymatically inactive NAD 2 , NADH was produced at the illuminated Pt‐modified p ‐GaAs surface. At low overpotential (−0.75 V vs. Ag/AgCl), Pt/ p ‐GaAs exhibited a seven‐fold greater faradaic efficiency for the formation of NADH than Pt alone, with reduced competition from the hydrogen evolution reaction. Improved faradaic efficiency and low overpotential suggest the possible utility of Pt/ p ‐GaAs in energy‐related NADH‐dependent enzymatic processes.

Authors:
 [1];  [1]; ORCiD logo [1]
  1. Princeton Univ., NJ (United States). Frick Lab., Dept. of Chemistry
Publication Date:
Research Org.:
Princeton Univ., NJ (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1418016
Alternate Identifier(s):
OSTI ID: 1401746
Grant/Contract Number:  
SC0002133; DGE-1148900
Resource Type:
Accepted Manuscript
Journal Name:
ChemElectroChem
Additional Journal Information:
Journal Volume: 4; Journal Issue: 5; Journal ID: ISSN 2196-0216
Publisher:
ChemPubSoc Europe
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 25 ENERGY STORAGE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 59 BASIC BIOLOGICAL SCIENCES; photoelectrochemistry; p-GaAs photocathode; NAD/NADH; CO2 utilization; Cofactor Regeneration; GaAs; Semiconductor

Citation Formats

Stufano, Paolo, Paris, Aubrey R., and Bocarsly, Andrew. Photoelectrochemical NADH Regeneration using Pt-Modified p -GaAs Semiconductor Electrodes. United States: N. p., 2017. Web. doi:10.1002/celc.201600488.
Stufano, Paolo, Paris, Aubrey R., & Bocarsly, Andrew. Photoelectrochemical NADH Regeneration using Pt-Modified p -GaAs Semiconductor Electrodes. United States. https://doi.org/10.1002/celc.201600488
Stufano, Paolo, Paris, Aubrey R., and Bocarsly, Andrew. Wed . "Photoelectrochemical NADH Regeneration using Pt-Modified p -GaAs Semiconductor Electrodes". United States. https://doi.org/10.1002/celc.201600488. https://www.osti.gov/servlets/purl/1418016.
@article{osti_1418016,
title = {Photoelectrochemical NADH Regeneration using Pt-Modified p -GaAs Semiconductor Electrodes},
author = {Stufano, Paolo and Paris, Aubrey R. and Bocarsly, Andrew},
abstractNote = {Abstract Cofactor regeneration in enzymatic reductions is crucial for the application of enzymes to both biological and energy‐related catalysis. Specifically, regenerating NADH from NAD + is of great interest, and using electrochemistry to achieve this end is considered a promising option. Here, we report the first example of photoelectrochemical NADH regeneration at the illuminated (λ>600 nm), metal‐modified, p ‐type semiconductor electrode Pt/ p ‐GaAs. Although bare p ‐GaAs electrodes produce only enzymatically inactive NAD 2 , NADH was produced at the illuminated Pt‐modified p ‐GaAs surface. At low overpotential (−0.75 V vs. Ag/AgCl), Pt/ p ‐GaAs exhibited a seven‐fold greater faradaic efficiency for the formation of NADH than Pt alone, with reduced competition from the hydrogen evolution reaction. Improved faradaic efficiency and low overpotential suggest the possible utility of Pt/ p ‐GaAs in energy‐related NADH‐dependent enzymatic processes.},
doi = {10.1002/celc.201600488},
journal = {ChemElectroChem},
number = 5,
volume = 4,
place = {United States},
year = {Wed Feb 22 00:00:00 EST 2017},
month = {Wed Feb 22 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

New Photoproducts from Irradiation of NADH with Near-UV Light
journal, October 2004

  • Vitinius, Ute; Schaffner, Kurt; Demuth, Martin
  • Chemistry & Biodiversity, Vol. 1, Issue 10
  • DOI: 10.1002/cbdv.200490109

Plasmon-driven photoregeneration of cofactor molecules
journal, January 2015

  • Sánchez-Iglesias, Ana; Chuvilin, Andrey; Grzelczak, Marek
  • Chemical Communications, Vol. 51, Issue 25
  • DOI: 10.1039/C4CC07829B

Electrochemistry of Aqueous Pyridinium: Exploration of a Key Aspect of Electrocatalytic Reduction of CO 2 to Methanol
journal, September 2013

  • Yan, Yong; Zeitler, Elizabeth L.; Gu, Jing
  • Journal of the American Chemical Society, Vol. 135, Issue 38
  • DOI: 10.1021/ja4064052

Catalytic effects for hydrogen photogeneration due to metallic deposition on P-GaAs
journal, July 1996


Biocatalytic Reductions and Chemical Versatility of the Old Yellow Enzyme Family of Flavoprotein Oxidoreductases
journal, June 2010

  • Toogood, Helen S.; Gardiner, John M.; Scrutton, Nigel S.
  • ChemCatChem, Vol. 2, Issue 8
  • DOI: 10.1002/cctc.201000094

Communication—Highly Efficient Electroenzymatic NADH Regeneration by an Electron-Relay Flavoenzyme
journal, January 2016

  • Lee, Sumi; Choe, Hyunjun; Cho, Dae Haeng
  • Journal of The Electrochemical Society, Vol. 163, Issue 5
  • DOI: 10.1149/2.0131606jes

Adsorption and electrochemical oxidation behaviour of NADH at a clean platinum electrode
journal, July 1980

  • Jaegfeldt, Hans
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 110, Issue 1-3
  • DOI: 10.1016/S0022-0728(80)80381-0

Direct electrochemical regeneration of the cofactor NADH on bare Ti, Ni, Co and Cd electrodes: The influence of electrode potential and electrode material
journal, June 2014


Direct regeneration of NADH on a ruthenium modified glassy carbon electrode
journal, September 2004


Recent advances in the biocatalytic reduction of ketones and oxidation of sec -alcohols
journal, April 2004

  • Kroutil, Wolfgang; Mang, Harald; Edegger, Klaus
  • Current Opinion in Chemical Biology, Vol. 8, Issue 2
  • DOI: 10.1016/j.cbpa.2004.02.005

Electroenzymatic synthesis (regeneration of NADH coenzyme): Use of nafion ion exchange films for immobilization of enzyme and redox mediator
journal, August 1994


Thermodynamics and kinetics of NAD+ adsorption on a glassy carbon electrode
journal, November 2013


Electrocatalytic reduction of NAD+ at glassy carbon electrode modified with single-walled carbon nanotubes and Ru(III) complexes
journal, June 2008

  • Salimi, Abdollah; Izadi, Mohadeseh; Hallaj, Rahman
  • Journal of Solid State Electrochemistry, Vol. 13, Issue 3
  • DOI: 10.1007/s10008-008-0583-6

Heterogeneous Catalysis Mediated Cofactor NADH Regeneration for Enzymatic Reduction
journal, February 2016


Evaluation of In Situ Electroenzymatic Regeneration of Coenzyme NADH in Packed Bed Membrane Reactors
journal, January 2004

  • Chen, X.; Fenton, J. M.; Fisher, R. J.
  • Journal of The Electrochemical Society, Vol. 151, Issue 2
  • DOI: 10.1149/1.1638386

Charge Transfer Process at Illuminated Semiconductor/Electrolyte Junctions Modified by Electrodeposition of Microscopic Metal Grain
journal, January 1989

  • Allongue, P.
  • Journal of The Electrochemical Society, Vol. 136, Issue 4
  • DOI: 10.1149/1.2096778

Cross-Linked LDH Crystals for Lactate Synthesis Coupled to Electroenzymatic Regeneration of NADH
journal, January 1996

  • Sobolov, Susan B.; Leonida, Mihaela Draganoiu; Bartoszko-Malik, Anita
  • The Journal of Organic Chemistry, Vol. 61, Issue 6
  • DOI: 10.1021/jo951408v

Optically transparent metallic catalysts on semiconductors
journal, January 1986


Electrochemistry of synthetic analogues of NAD dimers
journal, January 1992


Cofactor regeneration for sustainable enzymatic biosynthesis
journal, July 2007


NAD/NADH as a model redox system: Mechanism, mediation, modification by the environment
journal, July 1982

  • Elving, Philip J.; Bresnahan, William T.; Moiroux, Jacques
  • Bioelectrochemistry and Bioenergetics, Vol. 9, Issue 3
  • DOI: 10.1016/0302-4598(82)80026-3

Enzymatic reductions for the chemist
journal, January 2011

  • Hollmann, Frank; Arends, Isabel W. C. E.; Holtmann, Dirk
  • Green Chemistry, Vol. 13, Issue 9
  • DOI: 10.1039/c1gc15424a

Nicotinamide adenine dinucleotide (NAD+) and related compounds. Electrochemical redox pattern and allied chemical behavior
journal, September 1975

  • Schmakel, Conrad O.; Santhanam, K. S. V.; Elving, Philip J.
  • Journal of the American Chemical Society, Vol. 97, Issue 18
  • DOI: 10.1021/ja00851a010

Recent progress in biocatalysis for asymmetric oxidation and reduction
journal, March 2009


Biocatalytic Oxidation of Primary and Secondary Alcohols
journal, February 2004

  • Kroutil, Wolfgang; Mang, Harald; Edegger, Klaus
  • Advanced Synthesis & Catalysis, Vol. 346, Issue 23
  • DOI: 10.1002/adsc.200303177

Practical chiral alcohol manufacture using ketoreductases
journal, April 2010

  • Huisman, Gjalt W.; Liang, Jack; Krebber, Anke
  • Current Opinion in Chemical Biology, Vol. 14, Issue 2
  • DOI: 10.1016/j.cbpa.2009.12.003

Direct electrochemical regeneration of the enzymatic cofactor 1,4-NADH employing nano-patterned glassy carbon/Pt and glassy carbon/Ni electrodes
journal, April 2012


Semiconductor electrode modifications: influence on the state distribution at the interface
journal, December 1989


Photocatalytic Regeneration of Nicotinamide Cofactors by Quantum Dot–Enzyme Biohybrid Complexes
journal, February 2016


ω-Transaminases for the synthesis of non-racemic α-chiral primary amines
journal, June 2010


Dispelling the Myths--Biocatalysis in Industrial Synthesis
journal, March 2003


Electrochemical regeneration of NADH on a glassy carbon electrode surface: The influence of electrolysis potential
journal, June 2011


Electrochemical reduction of NAD+ on a polycrystalline gold electrode
journal, July 2006


Non-enzymatic regeneration of nicotinamide and flavin cofactors for monooxygenase catalysis
journal, April 2006


Investigation of Photoelectrochemical Corrosion of Semiconductors
journal, January 1981

  • Frese, K. W.
  • Journal of The Electrochemical Society, Vol. 128, Issue 9
  • DOI: 10.1149/1.2127770

Direct reduction of NAD+ by electrochemical procedure and application of the regenerated NADH to enzyme reaction
journal, October 1994

  • Yun, Se-Eok; Taya, Masahito; Tone, Setsuji
  • Biotechnology Letters, Vol. 16, Issue 10
  • DOI: 10.1007/BF01022402

A kinetic study of NAD+ reduction on a ruthenium modified glassy carbon electrode
journal, July 2004


Interactive Adsorption Behavior of NAD + at a Gold Electrode Surface
journal, March 2007


Direct electrochemical regeneration of NADH from NAD+ using cholesterol-modified gold amalgam electrode
journal, January 1999

  • Baik, Sang Ho; Kang, Chan; Jeon, II Cheol
  • Biotechnology Techniques, Vol. 13, Issue 1, p. 1-5
  • DOI: 10.1023/A:1008865212773

Recent developments in pyridine nucleotide regeneration
journal, August 2003


Direct electrocatalytic reduction of coenzyme NAD+ to enzymatically-active 1,4-NADH employing an iridium/ruthenium-oxide electrode
journal, January 2015


Biocatalytic Reductions: From Lab Curiosity to “First Choice”
journal, October 2007

  • De Wildeman, Stefaan M. A.; Sonke, Theo; Schoemaker, Hans E.
  • Accounts of Chemical Research, Vol. 40, Issue 12
  • DOI: 10.1021/ar7001073

Electrochemical regeneration of nicotinamide cofactor using a polypyrrole rhodium bis-terpyridine modified electrode
journal, February 1993


Regeneration of cofactors for use in biocatalysis
journal, December 2003


Electroreduction of NAD+ to enzymatically active NADH at poly(neutral red) modified electrodes
journal, December 1995

  • Karyakin, Arkady A.; Bobrova, Oksana A.; Karyakina, Elena E.
  • Journal of Electroanalytical Chemistry, Vol. 399, Issue 1-2
  • DOI: 10.1016/0022-0728(95)04300-4

Selective Solar-Driven Reduction of CO 2 to Methanol Using a Catalyzed p-GaP Based Photoelectrochemical Cell
journal, May 2008

  • Barton, Emily E.; Rampulla, David M.; Bocarsly, Andrew B.
  • Journal of the American Chemical Society, Vol. 130, Issue 20
  • DOI: 10.1021/ja0776327

Biocatalytic Redox Reactions for Organic Synthesis: Nonconventional Regeneration Methods
journal, June 2010

  • Hollmann, Frank; Arends, Isabel W. C. E.; Buehler, Katja
  • ChemCatChem, Vol. 2, Issue 7
  • DOI: 10.1002/cctc.201000069

The Reversible Hydrogen Electrode:  Potential-Dependent Activation Energies over Platinum from Quantum Theory
journal, July 2004

  • Cai, Yu; Anderson, Alfred B.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 28
  • DOI: 10.1021/jp037126d

Electrocatalytic behavior of glassy carbon electrode modified with ruthenium nanoparticles and ruthenium film
journal, February 2016

  • Rahman, Gul; Mian, Shabeer Ahmad; Shah, Anwar ul Haq Ali
  • Journal of Applied Electrochemistry, Vol. 46, Issue 4
  • DOI: 10.1007/s10800-016-0937-1

Rhodium-Coordinated Poly(arylene-ethynylene)- alt -Poly(arylene-vinylene) Copolymer Acting as Photocatalyst for Visible-Light-Powered NAD + /NADH Reduction
journal, September 2014

  • Oppelt, Kerstin T.; Gasiorowski, Jacek; Egbe, Daniel Ayuk Mbi
  • Journal of the American Chemical Society, Vol. 136, Issue 36
  • DOI: 10.1021/ja506060u

Semiconductor electrodes. 24. Behavior of photoelectrochemical cells based on p-type gallium arsenide in aqueous solutions
journal, May 1980

  • Fan, Fu Ren F.; Bard, Allen J.
  • Journal of the American Chemical Society, Vol. 102, Issue 11
  • DOI: 10.1021/ja00531a002

Diaphorase-Viologen Conjugates as Bioelectrocatalysts for NADH Regeneration
journal, January 2016

  • Dinh, Thu Huong; Lee, Sang Cheon; Hou, Chen Yuan
  • Journal of The Electrochemical Society, Vol. 163, Issue 6
  • DOI: 10.1149/2.1211606jes

Using a One-Electron Shuttle for the Multielectron Reduction of CO2 to Methanol: Kinetic, Mechanistic, and Structural Insights
journal, August 2010

  • Barton Cole, Emily; Lakkaraju, Prasad S.; Rampulla, David M.
  • Journal of the American Chemical Society, Vol. 132, Issue 33, p. 11539-11551
  • DOI: 10.1021/ja1023496

Electrocatalytic Carbon Dioxide Activation: The Rate-Determining Step of Pyridinium-Catalyzed CO2 Reduction
journal, February 2011

  • Morris, Amanda J.; McGibbon, Robert T.; Bocarsly, Andrew B.
  • ChemSusChem, Vol. 4, Issue 2, p. 191-196
  • DOI: 10.1002/cssc.201000379

Photoelectrocatalysis and electrocatalysis on p-silicon
journal, April 1984

  • Szklarczyk, M.; Bockris, J. O'M.
  • The Journal of Physical Chemistry, Vol. 88, Issue 9
  • DOI: 10.1021/j150653a028

Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems.
journal, April 1964

  • Nicholson, R. S.; Shain, Irving
  • Analytical Chemistry, Vol. 36, Issue 4, p. 706-723
  • DOI: 10.1021/ac60210a007

Experiment and theory of ‘transparent’ metal films
journal, February 1985

  • Porter, John D.; Heller, Adam; Aspnes, David E.
  • Nature, Vol. 313, Issue 6004
  • DOI: 10.1038/313664a0

On the assignment of the redox peaks observed in phosphate and phosphite solutions at a Pt electrode
journal, October 1990

  • Takehara, Kô; Ide, Y.; Nakazato, Tetsuya
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 293, Issue 1-2
  • DOI: 10.1016/0022-0728(90)80072-E