skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Anthraquinone Derivatives in Aqueous Flow Batteries

Authors:
 [1];  [2];  [2];  [1];  [3];  [4];  [2];  [5];  [1]
  1. Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge MA 02138 USA
  2. Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138 USA
  3. Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder CO 80309 USA
  4. Biophysics Program, Stanford University, Stanford CA 94305 USA
  5. Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge MA 02138 USA, Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138 USA
Publication Date:
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1401729
Grant/Contract Number:  
AR0000348
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Name: Advanced Energy Materials Journal Volume: 7 Journal Issue: 8; Journal ID: ISSN 1614-6832
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Gerhardt, Michael R., Tong, Liuchuan, Gómez-Bombarelli, Rafael, Chen, Qing, Marshak, Michael P., Galvin, Cooper J., Aspuru-Guzik, Alán, Gordon, Roy G., and Aziz, Michael J. Anthraquinone Derivatives in Aqueous Flow Batteries. Germany: N. p., 2016. Web. doi:10.1002/aenm.201601488.
Gerhardt, Michael R., Tong, Liuchuan, Gómez-Bombarelli, Rafael, Chen, Qing, Marshak, Michael P., Galvin, Cooper J., Aspuru-Guzik, Alán, Gordon, Roy G., & Aziz, Michael J. Anthraquinone Derivatives in Aqueous Flow Batteries. Germany. doi:10.1002/aenm.201601488.
Gerhardt, Michael R., Tong, Liuchuan, Gómez-Bombarelli, Rafael, Chen, Qing, Marshak, Michael P., Galvin, Cooper J., Aspuru-Guzik, Alán, Gordon, Roy G., and Aziz, Michael J. Wed . "Anthraquinone Derivatives in Aqueous Flow Batteries". Germany. doi:10.1002/aenm.201601488.
@article{osti_1401729,
title = {Anthraquinone Derivatives in Aqueous Flow Batteries},
author = {Gerhardt, Michael R. and Tong, Liuchuan and Gómez-Bombarelli, Rafael and Chen, Qing and Marshak, Michael P. and Galvin, Cooper J. and Aspuru-Guzik, Alán and Gordon, Roy G. and Aziz, Michael J.},
abstractNote = {},
doi = {10.1002/aenm.201601488},
journal = {Advanced Energy Materials},
number = 8,
volume = 7,
place = {Germany},
year = {2016},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1002/aenm.201601488

Citation Metrics:
Cited by: 29 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Novel Quinone-Based Couples for Flow Batteries
journal, May 2013

  • Huskinson, B.; Nawar, S.; Gerhardt, M. R.
  • ECS Transactions, Vol. 53, Issue 7, p. 101-105
  • DOI: 10.1149/05307.0101ecst

A Correlation of Reaction Rates
journal, January 1955

  • Hammond, George S.
  • Journal of the American Chemical Society, Vol. 77, Issue 2
  • DOI: 10.1021/ja01607a027

Polarization curve analysis of all-vanadium redox flow batteries
journal, August 2011

  • Aaron, Doug; Tang, Zhijiang; Papandrew, Alexander B.
  • Journal of Applied Electrochemistry, Vol. 41, Issue 10
  • DOI: 10.1007/s10800-011-0335-7

Optimization of electrode characteristics for the Br2/H2 redox flow cell
journal, October 2014

  • Tucker, Michael C.; Cho, Kyu Taek; Weber, Adam Z.
  • Journal of Applied Electrochemistry, Vol. 45, Issue 1
  • DOI: 10.1007/s10800-014-0772-1

Computational design of molecules for an all-quinone redox flow battery
journal, January 2015

  • Er, Süleyman; Suh, Changwon; Marshak, Michael P.
  • Chemical Science, Vol. 6, Issue 2, p. 885-893
  • DOI: 10.1039/C4SC03030C

Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects: All-vanadium redox flow battery for energy storage
journal, May 2011

  • Kear, Gareth; Shah, Akeel A.; Walsh, Frank C.
  • International Journal of Energy Research, Vol. 36, Issue 11
  • DOI: 10.1002/er.1863

Freely Available Conformer Generation Methods: How Good Are They?
journal, April 2012

  • Ebejer, Jean-Paul; Morris, Garrett M.; Deane, Charlotte M.
  • Journal of Chemical Information and Modeling, Vol. 52, Issue 5
  • DOI: 10.1021/ci2004658

Quantum Chemistry on Graphical Processing Units. 3. Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular Dynamics
journal, August 2009

  • Ufimtsev, Ivan S.; Martinez, Todd J.
  • Journal of Chemical Theory and Computation, Vol. 5, Issue 10
  • DOI: 10.1021/ct9003004

Cyclic Performance Analysis of Hydrogen/Bromine Flow Batteries for Grid-Scale Energy Storage
journal, June 2014


A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4-HO-TEMPO Catholyte
journal, December 2015

  • Liu, Tianbiao; Wei, Xiaoliang; Nie, Zimin
  • Advanced Energy Materials, Vol. 6, Issue 3, 1501449
  • DOI: 10.1002/aenm.201501449

3-(Acyloxy)-3-buten-2-ones as dienophiles in anthracyclinone synthesis. An efficient route to 4-demethoxy-7-deoxydaunomycinone derivatives
journal, January 1982

  • Ardecky, Robert J.; Dominguez, Domingo; Cava, Michael P.
  • The Journal of Organic Chemistry, Vol. 47, Issue 3
  • DOI: 10.1021/jo00342a005

The rise of organic electrode materials for energy storage
journal, January 2016

  • Schon, Tyler B.; McAllister, Bryony T.; Li, Peng-Fei
  • Chemical Society Reviews, Vol. 45, Issue 22
  • DOI: 10.1039/C6CS00173D

An Organic Electroactive Material for Flow Batteries
journal, February 2016


Redox flow batteries a review
journal, September 2011

  • Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.
  • Journal of Applied Electrochemistry, Vol. 41, Issue 10, p. 1137-1164
  • DOI: 10.1007/s10800-011-0348-2

An Inexpensive Aqueous Flow Battery for Large-Scale Electrical Energy Storage Based on Water-Soluble Organic Redox Couples
journal, January 2014

  • Yang, Bo; Hoober-Burkhardt, Lena; Wang, Fang
  • Journal of The Electrochemical Society, Vol. 161, Issue 9
  • DOI: 10.1149/2.1001409jes

High-Performance Aqueous Organic Flow Battery with Quinone-Based Redox Couples at Both Electrodes
journal, January 2016

  • Yang, Bo; Hoober-Burkhardt, Lena; Krishnamoorthy, Sankarganesh
  • Journal of The Electrochemical Society, Vol. 163, Issue 7
  • DOI: 10.1149/2.1371607jes

A Quinone-Bromide Flow Battery with 1 W/cm2 Power Density
journal, July 2015

  • Chen, Qing; Gerhardt, Michael R.; Hartle, Lauren
  • Journal of The Electrochemical Society, Vol. 163, Issue 1, p. A5010-A5013
  • DOI: 10.1149/2.0021601jes

Recent advances with UNSW vanadium-based redox flow batteries
journal, November 2009

  • Skyllas-Kazacos, Maria; Kazacos, George; Poon, Grace
  • International Journal of Energy Research, Vol. 34, Issue 2
  • DOI: 10.1002/er.1658

Alkaline quinone flow battery
journal, September 2015


Cycling Analysis of a Quinone-Bromide Redox Flow Battery
journal, September 2015

  • Chen, Qing; Eisenach, Louise; Aziz, Michael J.
  • Journal of The Electrochemical Society, Vol. 163, Issue 1
  • DOI: 10.1149/2.0081601jes

A cyclic voltammetric study of the aqueous electrochemistry of some quinones
journal, January 1985


High Power Density Redox Flow Battery Cells
journal, May 2013


A metal-free organic–inorganic aqueous flow battery
journal, January 2014

  • Huskinson, Brian; Marshak, Michael P.; Suh, Changwon
  • Nature, Vol. 505, Issue 7482, p. 195-198
  • DOI: 10.1038/nature12909

Cycling of a Quinone-Bromide Flow Battery for Large-Scale Electrochemical Energy Storage
journal, September 2014

  • Huskinson, B.; Marshak, M. P.; Gerhardt, M. R.
  • ECS Transactions, Vol. 61, Issue 37, p. 27-30
  • DOI: 10.1149/06137.0027ecst