DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Amorphous MoS 3 Infiltrated with Carbon Nanotubes as an Advanced Anode Material of Sodium‐Ion Batteries with Large Gravimetric, Areal, and Volumetric Capacities

Abstract

The search for earth‐abundant and high‐performance electrode materials for sodium‐ion batteries represents an important challenge to current battery research. 2D transition metal dichalcogenides, particularly MoS 2 , have attracted increasing attention recently, but few of them so far have been able to meet expectations. In this study, it is demonstrated that another phase of molybdenum sulfide—amorphous chain‐like MoS 3 —can be a better choice as the anode material of sodium‐ion batteries. Highly compact MoS 3 particles infiltrated with carbon nanotubes are prepared via the facile acid precipitation method in ethylene glycol. Compared to crystalline MoS 2 , the resultant amorphous MoS 3 not only exhibits impressive gravimetric performance—featuring excellent specific capacity (≈615 mA h g −1 ), rate capability (235 mA h g −1 at 20 A g −1 ), and cycling stability but also shows exceptional volumetric capacity of ≈1000 mA h cm −3 and an areal capacity of >6.0 mA h cm −2 at very high areal loadings of active materials (up to 12 mg cm −2 ). The experimental results are supported by density functional theory simulations showing that the 1D chains of MoS 3 can facilitate the adsorption and diffusion of Na + ions. At last,more » it is demonstrated that the MoS 3 anode can be paired with an Na 3 V 2 (PO 4 ) 3 cathode to afford full cells with great capacity and cycling performance.« less

Authors:
 [1];  [1];  [1];  [2];  [1];  [3];  [1];  [4];  [1];  [1];  [1];  [3];  [1];  [1];  [1];  [1];  [2]
  1. Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices Soochow University Suzhou 215123 China
  2. Chemical Sciences and Engineering Division Argonne National Laboratory Lemont IL 60439 USA
  3. Department of Chemistry Dalhousie University Halifax NS B3H 4R2 Canada
  4. Department of Chemical Engineering University of Waterloo Ontario N2L 3G1 Canada
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1401718
Grant/Contract Number:  
DE‐AC02‐06CH11357
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Name: Advanced Energy Materials Journal Volume: 7 Journal Issue: 5; Journal ID: ISSN 1614-6832
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Ye, Hualin, Wang, Lu, Deng, Shuo, Zeng, Xiaoqiao, Nie, Kaiqi, Duchesne, Paul N., Wang, Bo, Liu, Simon, Zhou, Junhua, Zhao, Feipeng, Han, Na, Zhang, Peng, Zhong, Jun, Sun, Xuhui, Li, Youyong, Li, Yanguang, and Lu, Jun. Amorphous MoS 3 Infiltrated with Carbon Nanotubes as an Advanced Anode Material of Sodium‐Ion Batteries with Large Gravimetric, Areal, and Volumetric Capacities. Germany: N. p., 2016. Web. doi:10.1002/aenm.201601602.
Ye, Hualin, Wang, Lu, Deng, Shuo, Zeng, Xiaoqiao, Nie, Kaiqi, Duchesne, Paul N., Wang, Bo, Liu, Simon, Zhou, Junhua, Zhao, Feipeng, Han, Na, Zhang, Peng, Zhong, Jun, Sun, Xuhui, Li, Youyong, Li, Yanguang, & Lu, Jun. Amorphous MoS 3 Infiltrated with Carbon Nanotubes as an Advanced Anode Material of Sodium‐Ion Batteries with Large Gravimetric, Areal, and Volumetric Capacities. Germany. https://doi.org/10.1002/aenm.201601602
Ye, Hualin, Wang, Lu, Deng, Shuo, Zeng, Xiaoqiao, Nie, Kaiqi, Duchesne, Paul N., Wang, Bo, Liu, Simon, Zhou, Junhua, Zhao, Feipeng, Han, Na, Zhang, Peng, Zhong, Jun, Sun, Xuhui, Li, Youyong, Li, Yanguang, and Lu, Jun. Thu . "Amorphous MoS 3 Infiltrated with Carbon Nanotubes as an Advanced Anode Material of Sodium‐Ion Batteries with Large Gravimetric, Areal, and Volumetric Capacities". Germany. https://doi.org/10.1002/aenm.201601602.
@article{osti_1401718,
title = {Amorphous MoS 3 Infiltrated with Carbon Nanotubes as an Advanced Anode Material of Sodium‐Ion Batteries with Large Gravimetric, Areal, and Volumetric Capacities},
author = {Ye, Hualin and Wang, Lu and Deng, Shuo and Zeng, Xiaoqiao and Nie, Kaiqi and Duchesne, Paul N. and Wang, Bo and Liu, Simon and Zhou, Junhua and Zhao, Feipeng and Han, Na and Zhang, Peng and Zhong, Jun and Sun, Xuhui and Li, Youyong and Li, Yanguang and Lu, Jun},
abstractNote = {The search for earth‐abundant and high‐performance electrode materials for sodium‐ion batteries represents an important challenge to current battery research. 2D transition metal dichalcogenides, particularly MoS 2 , have attracted increasing attention recently, but few of them so far have been able to meet expectations. In this study, it is demonstrated that another phase of molybdenum sulfide—amorphous chain‐like MoS 3 —can be a better choice as the anode material of sodium‐ion batteries. Highly compact MoS 3 particles infiltrated with carbon nanotubes are prepared via the facile acid precipitation method in ethylene glycol. Compared to crystalline MoS 2 , the resultant amorphous MoS 3 not only exhibits impressive gravimetric performance—featuring excellent specific capacity (≈615 mA h g −1 ), rate capability (235 mA h g −1 at 20 A g −1 ), and cycling stability but also shows exceptional volumetric capacity of ≈1000 mA h cm −3 and an areal capacity of >6.0 mA h cm −2 at very high areal loadings of active materials (up to 12 mg cm −2 ). The experimental results are supported by density functional theory simulations showing that the 1D chains of MoS 3 can facilitate the adsorption and diffusion of Na + ions. At last, it is demonstrated that the MoS 3 anode can be paired with an Na 3 V 2 (PO 4 ) 3 cathode to afford full cells with great capacity and cycling performance.},
doi = {10.1002/aenm.201601602},
journal = {Advanced Energy Materials},
number = 5,
volume = 7,
place = {Germany},
year = {Thu Nov 17 00:00:00 EST 2016},
month = {Thu Nov 17 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/aenm.201601602

Citation Metrics:
Cited by: 245 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


Mesoporous Amorphous FePO 4 Nanospheres as High-Performance Cathode Material for Sodium-Ion Batteries
journal, May 2014

  • Fang, Yongjin; Xiao, Lifen; Qian, Jiangfeng
  • Nano Letters, Vol. 14, Issue 6
  • DOI: 10.1021/nl501152f

Synergistic Na-Storage Reactions in Sn 4 P 3 as a High-Capacity, Cycle-stable Anode of Na-Ion Batteries
journal, March 2014

  • Qian, Jiangfeng; Xiong, Ya; Cao, Yuliang
  • Nano Letters, Vol. 14, Issue 4
  • DOI: 10.1021/nl404637q

Carbon Nanofibers Decorated with Molybdenum Disulfide Nanosheets: Synergistic Lithium Storage and Enhanced Electrochemical Performance
journal, September 2014

  • Zhou, Fei; Xin, Sen; Liang, Hai-Wei
  • Angewandte Chemie International Edition, Vol. 53, Issue 43
  • DOI: 10.1002/anie.201407103

Conversion reactions for sodium-ion batteries
journal, January 2013

  • Klein, Franziska; Jache, Birte; Bhide, Amrtha
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 38
  • DOI: 10.1039/c3cp52125g

Ni 3+ -Induced Formation of Active NiOOH on the Spinel Ni-Co Oxide Surface for Efficient Oxygen Evolution Reaction
journal, February 2015

  • Wang, Hsin-Yi; Hsu, Ying-Ya; Chen, Rong
  • Advanced Energy Materials, Vol. 5, Issue 10
  • DOI: 10.1002/aenm.201500091

Effective Liquid-Phase Exfoliation and Sodium Ion Battery Application of MoS 2 Nanosheets
journal, May 2014

  • Bang, Gyeong Sook; Nam, Kwan Woo; Kim, Jong Yun
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 10
  • DOI: 10.1021/am4060222

A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes
journal, February 2016


Amorphous molybdenum trisulfide: A new lithium battery cathode
journal, November 1979


MoS 2 Nanoflowers with Expanded Interlayers as High-Performance Anodes for Sodium-Ion Batteries
journal, September 2014


Lithium ion battery applications of molybdenum disulfide (MoS 2 ) nanocomposites
journal, January 2014

  • Stephenson, Tyler; Li, Zhi; Olsen, Brian
  • Energy Environ. Sci., Vol. 7, Issue 1
  • DOI: 10.1039/C3EE42591F

Self-assembly of hierarchical MoSx/CNT nanocomposites (2<x<3): towards high performance anode materials for lithium ion batteries
journal, July 2013

  • Shi, Yumeng; Wang, Ye; Wong, Jen It
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02169

Modeling the Structure of Amorphous MoS 3 :  A Neutron Diffraction and Reverse Monte Carlo Study
journal, January 2004

  • Hibble, Simon J.; Wood, Glenn B.
  • Journal of the American Chemical Society, Vol. 126, Issue 3
  • DOI: 10.1021/ja037666o

Optimizing Areal Capacities through Understanding the Limitations of Lithium-Ion Electrodes
journal, November 2015

  • Gallagher, Kevin G.; Trask, Stephen E.; Bauer, Christoph
  • Journal of The Electrochemical Society, Vol. 163, Issue 2
  • DOI: 10.1149/2.0321602jes

Na-ion batteries, recent advances and present challenges to become low cost energy storage systems
journal, January 2012

  • Palomares, Verónica; Serras, Paula; Villaluenga, Irune
  • Energy & Environmental Science, Vol. 5, Issue 3
  • DOI: 10.1039/c2ee02781j

Amorphous Molybdenum Sulfide Electrodes for Nonaqueous Electrochemical Cells
journal, January 1987

  • Auborn, J. J.
  • Journal of The Electrochemical Society, Vol. 134, Issue 3
  • DOI: 10.1149/1.2100512

Hydrogen evolution catalyzed by MoS3 and MoS2 particles
journal, January 2012

  • Vrubel, Heron; Merki, Daniel; Hu, Xile
  • Energy & Environmental Science, Vol. 5, Issue 3
  • DOI: 10.1039/c2ee02835b

Comparative IR and Raman studies of various amorphous MoS3 and LixMoS3 phases
journal, July 1989


Thermal decomposition of (NH4)2MoO2S2, (NH4)2MoS4, (NH4)2WO2S2 and (NH4)2WS4
journal, June 1973


Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
journal, January 2013

  • Pan, Huilin; Hu, Yong-Sheng; Chen, Liquan
  • Energy & Environmental Science, Vol. 6, Issue 8
  • DOI: 10.1039/c3ee40847g

Water-Soluble MoS 3 Nanoparticles for Photocatalytic H 2 Evolution
journal, March 2015


Engineering the Composition and Crystallinity of Molybdenum Sulfide for High-Performance Electrocatalytic Hydrogen Evolution
journal, November 2014

  • Li, Yanpeng; Yu, Yifei; Huang, Yufeng
  • ACS Catalysis, Vol. 5, Issue 1
  • DOI: 10.1021/cs501635v

MoS 2 Nanosheets Vertically Aligned on Carbon Paper: A Freestanding Electrode for Highly Reversible Sodium-Ion Batteries
journal, December 2015

  • Xie, Xiuqiang; Makaryan, Taron; Zhao, Mengqiang
  • Advanced Energy Materials, Vol. 6, Issue 5
  • DOI: 10.1002/aenm.201502161

Single-Layered Ultrasmall Nanoplates of MoS 2 Embedded in Carbon Nanofibers with Excellent Electrochemical Performance for Lithium and Sodium Storage
journal, January 2014

  • Zhu, Changbao; Mu, Xiaoke; van Aken, Peter A.
  • Angewandte Chemie International Edition, Vol. 53, Issue 8
  • DOI: 10.1002/anie.201308354

Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries
journal, May 2012

  • Kim, Sung-Wook; Seo, Dong-Hwa; Ma, Xiaohua
  • Advanced Energy Materials, Vol. 2, Issue 7, p. 710-721
  • DOI: 10.1002/aenm.201200026

From Bulk to Monolayer MoS2: Evolution of Raman Scattering
journal, January 2012

  • Li, Hong; Zhang, Qing; Yap, Chin Chong Ray
  • Advanced Functional Materials, Vol. 22, Issue 7
  • DOI: 10.1002/adfm.201102111

Research Development on Sodium-Ion Batteries
journal, October 2014

  • Yabuuchi, Naoaki; Kubota, Kei; Dahbi, Mouad
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500192f

Prospects for reducing the processing cost of lithium ion batteries
journal, February 2015


The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage
journal, February 2015

  • Kundu, Dipan; Talaie, Elahe; Duffort, Victor
  • Angewandte Chemie International Edition, Vol. 54, Issue 11
  • DOI: 10.1002/anie.201410376

Electrochemical properties of all-solid-state lithium batteries with amorphous MoS 3 electrodes prepared by mechanical milling
journal, January 2015

  • Matsuyama, Takuya; Hayashi, Akitoshi; Ozaki, Tomoatsu
  • Journal of Materials Chemistry A, Vol. 3, Issue 27
  • DOI: 10.1039/C5TA02263K

The First Report on Excellent Cycling Stability and Superior Rate Capability of Na 3 V 2 (PO 4 ) 3 for Sodium Ion Batteries
journal, November 2012

  • Saravanan, Kuppan; Mason, Chad W.; Rudola, Ashish
  • Advanced Energy Materials, Vol. 3, Issue 4
  • DOI: 10.1002/aenm.201200803

True Performance Metrics in Electrochemical Energy Storage
journal, November 2011


Ab initio characterization of layered MoS2 as anode for sodium-ion batteries
journal, December 2014


An Advanced MoS 2 /Carbon Anode for High-Performance Sodium-Ion Batteries
journal, September 2014


Capacitive Energy Storage in Nanostructured Carbon–Electrolyte Systems
journal, June 2012

  • Simon, P.; Gogotsi, Y.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar200306b

A Rechargeable All-Solid-State Sodium Cell with Polymer Electrolyte
journal, January 1985

  • West, K.
  • Journal of The Electrochemical Society, Vol. 132, Issue 12
  • DOI: 10.1149/1.2113725

Growth and Activation of an Amorphous Molybdenum Sulfide Hydrogen Evolving Catalyst
journal, August 2013


Nanostructured CuP 2 /C composites as high-performance anode materials for sodium ion batteries
journal, January 2015

  • Zhao, Feipeng; Han, Na; Huang, Wenjing
  • Journal of Materials Chemistry A, Vol. 3, Issue 43
  • DOI: 10.1039/C5TA05781G

Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure
journal, September 1998


MoS 2 /Graphene Composite Paper for Sodium-Ion Battery Electrodes
journal, January 2014

  • David, Lamuel; Bhandavat, Romil; Singh, Gurpreet
  • ACS Nano, Vol. 8, Issue 2
  • DOI: 10.1021/nn406156b

Reversible sodium storage via conversion reaction of a MoS 2 –C composite
journal, January 2014

  • Wang, Yun-Xiao; Seng, Kuok Hau; Chou, Shu-Lei
  • Chem. Commun., Vol. 50, Issue 73
  • DOI: 10.1039/C4CC00294F

Superior Electrochemical Performance and Storage Mechanism of Na 3 V 2 (PO 4 ) 3 Cathode for Room-Temperature Sodium-Ion Batteries
journal, October 2012


Thick Electrodes for High Energy Lithium Ion Batteries
journal, January 2015

  • Singh, Madhav; Kaiser, Jörg; Hahn, Horst
  • Journal of The Electrochemical Society, Vol. 162, Issue 7
  • DOI: 10.1149/2.0401507jes

Nanoflake-Assembled Hierarchical Na 3 V 2 (PO 4 ) 3 /C Microflowers: Superior Li Storage Performance and Insertion/Extraction Mechanism
journal, February 2015

  • An, Qinyou; Xiong, Fangyu; Wei, Qiulong
  • Advanced Energy Materials, Vol. 5, Issue 10
  • DOI: 10.1002/aenm.201401963

Ultrathin MoS 2 Nanosheets as Anode Materials for Sodium-Ion Batteries with Superior Performance
journal, December 2014


Two-Dimensional Transition Metal Dichalcogenide Monolayers as Promising Sodium Ion Battery Anodes
journal, November 2015

  • Yang, Eunjeong; Ji, Hyunjun; Jung, Yousung
  • The Journal of Physical Chemistry C, Vol. 119, Issue 47
  • DOI: 10.1021/acs.jpcc.5b09935

Evidence from in Situ X-ray Absorption Spectroscopy for the Involvement of Terminal Disulfide in the Reduction of Protons by an Amorphous Molybdenum Sulfide Electrocatalyst
journal, December 2014

  • Lassalle-Kaiser, Benedikt; Merki, Daniel; Vrubel, Heron
  • Journal of the American Chemical Society, Vol. 137, Issue 1
  • DOI: 10.1021/ja510328m

Iron-based sodium-ion full batteries
journal, January 2016

  • Ye, Hualin; Wang, Yeyun; Zhao, Feipeng
  • Journal of Materials Chemistry A, Vol. 4, Issue 5
  • DOI: 10.1039/C5TA09867J

Model oxide supported MoS2 HDS catalysts: structure and surface properties
journal, January 2011

  • Cesano, Federico; Bertarione, Serena; Piovano, Andrea
  • Catalysis Science & Technology, Vol. 1, Issue 1
  • DOI: 10.1039/c0cy00050g

Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water
journal, January 2011

  • Merki, Daniel; Fierro, Stéphane; Vrubel, Heron
  • Chem. Sci., Vol. 2, Issue 7, p. 1262-1267
  • DOI: 10.1039/C1SC00117E

Solution-Processed Two-Dimensional Metal Dichalcogenide-Based Nanomaterials for Energy Storage and Conversion
journal, April 2016


A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries
journal, January 2015

  • Lin, Dingchang; Lu, Zhenda; Hsu, Po-Chun
  • Energy & Environmental Science, Vol. 8, Issue 8
  • DOI: 10.1039/C5EE01363A

WinXAS a Program for X-ray Absorption Spectroscopy Data Analysis under MS-Windows
journal, March 1998


High mass loading, binder-free MXene anodes for high areal capacity Li-ion batteries
journal, May 2015


Enhanced photoelectrochemical hydrogen production using silicon nanowires@MoS3
journal, November 2013