DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Isotopic insights into methane production, oxidation, and emissions in Arctic polygon tundra

Abstract

Arctic wetlands are currently net sources of atmospheric CH4. Due to their complex biogeochemical controls and high spatial and temporal variability, current net CH4 emissions and gross CH4 processes have been difficult to quantify, and their predicted responses to climate change remain uncertain. Here, we investigated CH4 production, oxidation, and surface emissions in Arctic polygon tundra, across a wet-to-dry permafrost degradation gradient from low-centered (intact) to flat- and high-centered (degraded) polygons. From 3 microtopographic positions (polygon centers, rims, and troughs) along the permafrost degradation gradient, we measured surface CH4 and CO2 fluxes, concentrations and stable isotope compositions of CH4 and DIC at three depths in the soil, and soil moisture and temperature. More degraded sites had lower CH4 emissions, a different primary methanogenic pathway, and greater CH4 oxidation than did intact permafrost sites, to a greater degree than soil moisture or temperature could explain. Surface CH4 flux decreased from 64 nmol m-2 s-1 in intact polygons to 7 nmol m-2 s-1 in degraded polygons, and stable isotope signatures of CH4 and DIC showed that acetate cleavage dominated CH4 production in low-centered polygons, while CO2 reduction was the primary pathway in degraded polygons. We see evidence that differences in water flow and vegetation between intact andmore » degraded polygons contributed to these observations. In contrast to many previous studies, these findings document a mechanism whereby permafrost degradation can lead to local decreases in tundra CH4 emissions.« less

Authors:
ORCiD logo [1];  [2];  [2];  [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Climate and Ecosystem Sciences Division; Univ. of California, Berkeley, CA (United States). Energy and Resources Group
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Climate and Ecosystem Sciences Division
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
Contributing Org.:
Ukpeaġvik Iñupiat Corp. (UIC), Barrow, AK (United States)
OSTI Identifier:
1474972
Alternate Identifier(s):
OSTI ID: 1401663
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Global Change Biology
Additional Journal Information:
Journal Volume: 22; Journal Issue: 10; Journal ID: ISSN 1354-1013
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; climate change; high latitude; isotopic composition; methane emissions; methane oxidation; methane production; permafrost; polygon tundra

Citation Formats

Vaughn, Lydia J. S., Conrad, Mark E., Bill, Markus, and Torn, Margaret S. Isotopic insights into methane production, oxidation, and emissions in Arctic polygon tundra. United States: N. p., 2016. Web. doi:10.1111/gcb.13281.
Vaughn, Lydia J. S., Conrad, Mark E., Bill, Markus, & Torn, Margaret S. Isotopic insights into methane production, oxidation, and emissions in Arctic polygon tundra. United States. https://doi.org/10.1111/gcb.13281
Vaughn, Lydia J. S., Conrad, Mark E., Bill, Markus, and Torn, Margaret S. Tue . "Isotopic insights into methane production, oxidation, and emissions in Arctic polygon tundra". United States. https://doi.org/10.1111/gcb.13281. https://www.osti.gov/servlets/purl/1474972.
@article{osti_1474972,
title = {Isotopic insights into methane production, oxidation, and emissions in Arctic polygon tundra},
author = {Vaughn, Lydia J. S. and Conrad, Mark E. and Bill, Markus and Torn, Margaret S.},
abstractNote = {Arctic wetlands are currently net sources of atmospheric CH4. Due to their complex biogeochemical controls and high spatial and temporal variability, current net CH4 emissions and gross CH4 processes have been difficult to quantify, and their predicted responses to climate change remain uncertain. Here, we investigated CH4 production, oxidation, and surface emissions in Arctic polygon tundra, across a wet-to-dry permafrost degradation gradient from low-centered (intact) to flat- and high-centered (degraded) polygons. From 3 microtopographic positions (polygon centers, rims, and troughs) along the permafrost degradation gradient, we measured surface CH4 and CO2 fluxes, concentrations and stable isotope compositions of CH4 and DIC at three depths in the soil, and soil moisture and temperature. More degraded sites had lower CH4 emissions, a different primary methanogenic pathway, and greater CH4 oxidation than did intact permafrost sites, to a greater degree than soil moisture or temperature could explain. Surface CH4 flux decreased from 64 nmol m-2 s-1 in intact polygons to 7 nmol m-2 s-1 in degraded polygons, and stable isotope signatures of CH4 and DIC showed that acetate cleavage dominated CH4 production in low-centered polygons, while CO2 reduction was the primary pathway in degraded polygons. We see evidence that differences in water flow and vegetation between intact and degraded polygons contributed to these observations. In contrast to many previous studies, these findings document a mechanism whereby permafrost degradation can lead to local decreases in tundra CH4 emissions.},
doi = {10.1111/gcb.13281},
journal = {Global Change Biology},
number = 10,
volume = 22,
place = {United States},
year = {Tue Mar 15 00:00:00 EDT 2016},
month = {Tue Mar 15 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 41 works
Citation information provided by
Web of Science

Figures / Tables:

Table 1 Table 1: Mean surface greenhouse gas fluxes and deep pore water δ13CH4, averaged across all sampling dates for each polygon type and feature. Flux measurements were made from opaque static chambers in July, August, and September 2013 from 3 low-centered and 4 flat/high-centered polygons. δ13CH4 values were measured from watermore » samples collected from the frost table in August 2012 and July – October 2013.« less

Save / Share:

Works referenced in this record:

Soil Organic Carbon Storage and Distribution in Arctic Tundra, Barrow, Alaska
journal, January 1999

  • Bockheim, J. G.; Everett, L. R.; Hinkel, K. M.
  • Soil Science Society of America Journal, Vol. 63, Issue 4
  • DOI: 10.2136/sssaj1999.634934x

Quantifying Wedge-Ice Volumes in Yedoma and Thermokarst Basin Deposits: Wedge-Ice Volume Calculation in Yedoma and Thermokarst Basin Deposits
journal, June 2014

  • Ulrich, Mathias; Grosse, Guido; Strauss, Jens
  • Permafrost and Periglacial Processes, Vol. 25, Issue 3
  • DOI: 10.1002/ppp.1810

An Arctic ecosystem : the coastal tundra at Barrow, Alaska
book, January 1980


Spatial variation in high-latitude methane flux along a transect across Siberian and European tundra environments
journal, January 1995

  • Christensen, T. R.; Jonasson, S.; Callaghan, T. V.
  • Journal of Geophysical Research, Vol. 100, Issue D10
  • DOI: 10.1029/95JD02145

Characteristics of cryogenic soils along a latitudinal transect in arctic Alaska
journal, November 1998

  • Ping, C. L.; Bockheim, J. G.; Kimble, J. M.
  • Journal of Geophysical Research: Atmospheres, Vol. 103, Issue D22
  • DOI: 10.1029/98JD02024

Land-atmosphere exchange of methane from soil thawing to soil freezing in a high-Arctic wet tundra ecosystem
journal, February 2012


Simultaneous Inference in General Parametric Models
journal, June 2008

  • Hothorn, Torsten; Bretz, Frank; Westfall, Peter
  • Biometrical Journal, Vol. 50, Issue 3
  • DOI: 10.1002/bimj.200810425

Paleoecological Evidence for Transitions between Contrasting Landforms in a Polygon-Patterned High Arctic Wetland
journal, November 2008


Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near council, Alaska
journal, January 2003

  • Yoshikawa, Kenji; Hinzman, Larry D.
  • Permafrost and Periglacial Processes, Vol. 14, Issue 2
  • DOI: 10.1002/ppp.451

Methane emissions from western Siberian wetlands: heterogeneity and sensitivity to climate change
journal, October 2007


An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions
journal, January 2012


Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO 2 and CH 4 emissions
journal, September 2015


Element Redistribution along Hydraulic and Redox Gradients of Low-Centered Polygons, Lena Delta, Northern Siberia
journal, January 2004

  • Fiedler, S.; Wagner, D.; Kutzbach, L.
  • Soil Science Society of America Journal, Vol. 68, Issue 3
  • DOI: 10.2136/sssaj2004.1002

Effects of permafrost melting on CO 2 and CH 4 exchange of a poorly drained black spruce lowland : PERMAFROST THAW AND C GAS EXCHANGE
journal, June 2006

  • Wickland, Kimberly P.; Striegl, Robert G.; Neff, Jason C.
  • Journal of Geophysical Research: Biogeosciences, Vol. 111, Issue G2
  • DOI: 10.1029/2005JG000099

Controls on the hydrogen isotopic composition of biogenic methane from high-latitude terrestrial wetlands: HIGH-LATITUDE TERRESTRIAL METHANE
journal, October 2006

  • Chanton, Jeffrey P.; Fields, Dana; Hines, Mark E.
  • Journal of Geophysical Research: Biogeosciences, Vol. 111, Issue G4
  • DOI: 10.1029/2005JG000134

Methyl halide and methane fluxes in the northern Alaskan coastal tundra
journal, January 2007

  • Rhew, Robert C.; Teh, Yit Arn; Abel, Triffid
  • Journal of Geophysical Research, Vol. 112, Issue G2
  • DOI: 10.1029/2006JG000314

Methyl fluoride, an inhibitor of methane oxidation and methane production
journal, September 1996


Fitting Linear Mixed-Effects Models Using lme4
journal, January 2015

  • Bates, Douglas; Mächler, Martin; Bolker, Ben
  • Journal of Statistical Software, Vol. 67, Issue 1
  • DOI: 10.18637/jss.v067.i01

Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide
journal, May 1974

  • Mook, W. G.; Bommerson, J. C.; Staverman, W. H.
  • Earth and Planetary Science Letters, Vol. 22, Issue 2, p. 169-176
  • DOI: 10.1016/0012-821X(74)90078-8

Methane stable isotope distribution at a Carex dominated fen in north central Alberta
journal, December 1999

  • Popp, Trevor J.; Chanton, Jeffrey P.; Whiting, Gary J.
  • Global Biogeochemical Cycles, Vol. 13, Issue 4
  • DOI: 10.1029/1999GB900060

Microbial controls on methane fluxes from a polygonal tundra of the Lena Delta, Siberia
journal, January 2003

  • Wagner, D.; Kobabe, S.; Pfeiffer, E. -M.
  • Permafrost and Periglacial Processes, Vol. 14, Issue 2
  • DOI: 10.1002/ppp.443

The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland
journal, August 2003


Principles of Terrestrial Ecosystem Ecology
book, September 2011


Methane suppression by iron and humic acids in soils of the Arctic Coastal Plain
journal, April 2015


Controls on soil methane fluxes: Tests of biophysical mechanisms using stable isotope tracers: BIOPHYSICAL CONTROL OF SOIL METHANE FLUX
journal, May 2007

  • von Fischer, Joseph C.; Hedin, Lars O.
  • Global Biogeochemical Cycles, Vol. 21, Issue 2
  • DOI: 10.1029/2006GB002687

Abrupt increase in permafrost degradation in Arctic Alaska
journal, January 2006

  • Jorgenson, M. Torre; Shur, Yuri L.; Pullman, Erik R.
  • Geophysical Research Letters, Vol. 33, Issue 2
  • DOI: 10.1029/2005GL024960

Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—Isotope evidence
journal, May 1986


Geochemical drivers of organic matter decomposition in arctic tundra soils
journal, December 2015


Water-table height and microtopography control biogeochemical cycling in an Arctic coastal tundra ecosystem
journal, January 2012


Plant transport and methane production as controls on methane flux from arctic wet meadow tundra
journal, March 1995


Observation of rapid drainage system development by thermal erosion of ice wedges on Bylot Island, Canadian Arctic Archipelago
journal, January 2007

  • Fortier, Daniel; Allard, Michel; Shur, Yuri
  • Permafrost and Periglacial Processes, Vol. 18, Issue 3
  • DOI: 10.1002/ppp.595

Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane
journal, September 1999


Plant Species Composition and Productivity following Permafrost Thaw and Thermokarst in Alaskan Tundra
journal, March 2007


Quantifying and relating land-surface and subsurface variability in permafrost environments using LiDAR and surface geophysical datasets
journal, December 2012


Thermokarst Lakes as a Source of Atmospheric CH 4 During the Last Deglaciation
journal, October 2007


Shift from Acetoclastic to H2-Dependent Methanogenesis in a West Siberian Peat Bog at Low pH Values and Isolation of an Acidophilic Methanobacterium Strain
journal, February 2007

  • Kotsyurbenko, O. R.; Friedrich, M. W.; Simankova, M. V.
  • Applied and Environmental Microbiology, Vol. 73, Issue 7
  • DOI: 10.1128/AEM.02413-06

Use of stable isotopes to determine methane oxidation in landfill cover soils
journal, April 1998

  • Liptay, K.; Chanton, J.; Czepiel, P.
  • Journal of Geophysical Research: Atmospheres, Vol. 103, Issue D7
  • DOI: 10.1029/97JD02630

Permafrost soils and carbon cycling
journal, January 2015


Shrinking ponds in subarctic Alaska based on 1950-2002 remotely sensed images: SHRINKING PONDS ACROSS BOREAL ALASKA
journal, October 2006

  • Riordan, Brian; Verbyla, David; McGuire, A. David
  • Journal of Geophysical Research: Biogeosciences, Vol. 111, Issue G4
  • DOI: 10.1029/2005JG000150

Methane dynamics regulated by microbial community response to permafrost thaw
journal, October 2014

  • McCalley, Carmody K.; Woodcroft, Ben J.; Hodgkins, Suzanne B.
  • Nature, Vol. 514, Issue 7523
  • DOI: 10.1038/nature13798

A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch
journal, July 2014

  • Anthony, K. M. Walter; Zimov, S. A.; Grosse, G.
  • Nature, Vol. 511, Issue 7510
  • DOI: 10.1038/nature13560

Anaerobic oxidation of methane in tropical and boreal soils: Ecological significance in terrestrial methane cycling: ANAEROBIC OXIDATION OF METHANE IN SOILS
journal, June 2012

  • Blazewicz, Steven J.; Petersen, Dorthe G.; Waldrop, Mark P.
  • Journal of Geophysical Research: Biogeosciences, Vol. 117, Issue G2
  • DOI: 10.1029/2011JG001864

Discovery of a novel methanogen prevalent in thawing permafrost
journal, February 2014

  • Mondav, Rhiannon; Woodcroft, Ben J.; Kim, Eun-Hae
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4212

Tundra Soils Formed over Ice Wedges, Northern Alaska1
journal, January 1967


Production, oxidation, emission and consumption of methane by soils: A review
journal, January 2001


Microtopographic controls on ecosystem functioning in the Arctic Coastal Plain
journal, January 2011

  • Zona, D.; Lipson, D. A.; Zulueta, R. C.
  • Journal of Geophysical Research, Vol. 116
  • DOI: 10.1029/2009JG001241

Effect of microrelief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia
journal, July 2004


Seasonal variation in methane oxidation in a landfill cover soil as determined by an in situ stable isotope technique
journal, March 2000

  • Chanton, Jeffrey; Liptay, Karen
  • Global Biogeochemical Cycles, Vol. 14, Issue 1
  • DOI: 10.1029/1999GB900087

Disappearing Arctic Lakes
journal, June 2005


Automated analysis of13C/12C ratios in CO2 and dissolved inorganic carbon for ecological and environmental applications
journal, November 2003

  • Torn, Margaret S.; Davis, Simon; Bird, Jeffrey A.
  • Rapid Communications in Mass Spectrometry, Vol. 17, Issue 23
  • DOI: 10.1002/rcm.1246

Interannual variations in tundra methane emission: A 4-year time series at fixed sites
journal, June 1992

  • Whalen, Stephen C.; Reeburgh, William S.
  • Global Biogeochemical Cycles, Vol. 6, Issue 2
  • DOI: 10.1029/92GB00430

Climate change and the permafrost carbon feedback
journal, April 2015

  • Schuur, E. A. G.; McGuire, A. D.; Schädel, C.
  • Nature, Vol. 520, Issue 7546
  • DOI: 10.1038/nature14338

Uncoupling of acetate degradation from methane formation in Alaskan wetlands: Connections to vegetation distribution: PATHWAYS OF METHANOGENESIS IN WETLANDS
journal, May 2008

  • Hines, Mark E.; Duddleston, Khrystyne N.; Rooney-Varga, Juliette N.
  • Global Biogeochemical Cycles, Vol. 22, Issue 2
  • DOI: 10.1029/2006GB002903

Methane flux from Peltandra virginica: stable isotope tracing and chamber effects
journal, March 1992

  • Chanton, Jeffrey P.; Whiting, Gary J.; Showers, William J.
  • Global Biogeochemical Cycles, Vol. 6, Issue 1
  • DOI: 10.1029/91GB02969

Soil moisture control over autumn season methane flux, Arctic Coastal Plain of Alaska
journal, January 2012


Polygonal tundra geomorphological change in response to warming alters future CO 2 and CH 4 flux on the Barrow Peninsula
journal, November 2014

  • Lara, Mark J.; McGuire, A. David; Euskirchen, Eugenie S.
  • Global Change Biology, Vol. 21, Issue 4
  • DOI: 10.1111/gcb.12757

Thermally induced movements in ice-wedge polygons, western arctic coast: a long-term study
journal, January 2000

  • MacKay, J. Ross
  • Géographie physique et Quaternaire, Vol. 54, Issue 1
  • DOI: 10.7202/004846ar

Warming-induced destabilization of peat plateau/thermokarst lake complexes
journal, January 2011

  • Sannel, A. B. K.; Kuhry, P.
  • Journal of Geophysical Research, Vol. 116, Issue G3
  • DOI: 10.1029/2010JG001635

Tundra vegetation change near Barrow, Alaska (1972–2010)
journal, January 2012


Stable carbon isotope fractionation during methanogenesis in three boreal peatland ecosystems
journal, January 2010


Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production
journal, April 2014

  • Hodgkins, S. B.; Tfaily, M. M.; McCalley, C. K.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 16
  • DOI: 10.1073/pnas.1314641111

Thermokarst in Siberia and Its Influence on the Development of Lowland Relief
journal, September 1970


The effect of gas transport on the isotope signature of methane in wetlands
journal, May 2005


Effect of permafrost thaw on CO 2 and CH 4 exchange in a western Alaska peatland chronosequence
journal, August 2014

  • Johnston, Carmel E.; Ewing, Stephanie A.; Harden, Jennifer W.
  • Environmental Research Letters, Vol. 9, Issue 8
  • DOI: 10.1088/1748-9326/9/8/085004

Environmental and physical controls on northern terrestrial methane emissions across permafrost zones
journal, November 2012

  • Olefeldt, David; Turetsky, Merritt R.; Crill, Patrick M.
  • Global Change Biology, Vol. 19, Issue 2
  • DOI: 10.1111/gcb.12071

The Regulation of Methane Oxidation in Soil
journal, October 1995


Environmental and biotic controls over methane flux from Arctic tundra
journal, January 1993


Methane transport mechanisms and isotopic fractionation in emergent macrophytes of an Alaskan tundra lake
journal, January 1992

  • Chanton, Jeffrey P.; Martens, Christopher S.; Kelley, Cheryl A.
  • Journal of Geophysical Research, Vol. 97, Issue D15
  • DOI: 10.1029/90JD01542

Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground: Polygonal Ground Chemistry
journal, March 2015

  • Newman, B. D.; Throckmorton, H. M.; Graham, D. E.
  • Geophysical Research Letters, Vol. 42, Issue 6
  • DOI: 10.1002/2014GL062804

Expert assessment of vulnerability of permafrost carbon to climate change
journal, March 2013


On maintaining pressure equilibrium between a soil CO 2 flux chamber and the ambient air
journal, January 2006

  • Xu, Liukang; Furtaw, Michael D.; Madsen, Rodney A.
  • Journal of Geophysical Research, Vol. 111, Issue D8
  • DOI: 10.1029/2005JD006435

Spatial and temporal fluctuations of methane production in anoxic coastal marine sediments: Methane production in marine sediments
journal, November 1983


The influence of methane oxidation on the stable isotopic composition of methane emitted from Florida swamp forests
journal, October 1994

  • Happell, James D.; Chanton, Jeffrey P.; Showers, William S.
  • Geochimica et Cosmochimica Acta, Vol. 58, Issue 20
  • DOI: 10.1016/0016-7037(94)90341-7

Sulfate reduction and methanogenesis in marine sediments
journal, February 1978


Arctic Soil Classification and Patterned Ground
journal, January 1962


Partitioning pathways of CO2 production in peatlands with stable carbon isotopes
journal, December 2012

  • Corbett, J. Elizabeth; Tfaily, Malak M.; Burdige, David J.
  • Biogeochemistry, Vol. 114, Issue 1-3
  • DOI: 10.1007/s10533-012-9813-1

Thawing sub-arctic permafrost: Effects on vegetation and methane emissions
journal, January 2004


Effects of thermo-erosion gullying on hydrologic flow networks, discharge and soil loss
journal, October 2014


Methane oxidation and pathways of production in a Texas paddy field deduced from measurements of flux, δ l3 C, and δD of CH 4
journal, September 1997

  • Tyler, S. C.; Bilek, R. S.; Sass, R. L.
  • Global Biogeochemical Cycles, Vol. 11, Issue 3
  • DOI: 10.1029/97GB01624

Sensitivity of the carbon cycle in the Arctic to climate change
journal, November 2009

  • McGuire, A. David; Anderson, Leif G.; Christensen, Torben R.
  • Ecological Monographs, Vol. 79, Issue 4
  • DOI: 10.1890/08-2025.1

Spatial distribution of microbial methane production pathways in temperate zone wetland soils: Stable carbon and hydrogen isotope evidence
journal, February 1997

  • Hornibrook, Edward R. C.; Longstaffe, Frederick J.; Fyfe, William S.
  • Geochimica et Cosmochimica Acta, Vol. 61, Issue 4
  • DOI: 10.1016/S0016-7037(96)00368-7

Revisiting factors controlling methane emissions from high-Arctic tundra
journal, January 2013


Permafrost carbon-climate feedbacks accelerate global warming
journal, August 2011

  • Koven, C. D.; Ringeval, B.; Friedlingstein, P.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 36
  • DOI: 10.1073/pnas.1103910108

Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales
journal, February 2013

  • Bridgham, Scott D.; Cadillo-Quiroz, Hinsby; Keller, Jason K.
  • Global Change Biology, Vol. 19, Issue 5
  • DOI: 10.1111/gcb.12131

Reduction in areal extent of high-latitude wetlands in response to permafrost thaw
journal, June 2011

  • Avis, Christopher A.; Weaver, Andrew J.; Meissner, Katrin J.
  • Nature Geoscience, Vol. 4, Issue 7
  • DOI: 10.1038/ngeo1160

Effect of thaw depth on fluxes of CO2 and CH4 in manipulated Arctic coastal tundra of Barrow, Alaska
journal, February 2015


The 13 C/ 12 C kinetic isotope effect for soil oxidation of methane at ambient atmospheric concentrations
journal, January 1989

  • King, Stagg L.; Quay, Paul D.; Lansdown, John M.
  • Journal of Geophysical Research, Vol. 94, Issue D15
  • DOI: 10.1029/JD094iD15p18273

Relative impacts of disturbance and temperature: persistent changes in microenvironment and vegetation in retrogressive thaw slumps
journal, July 2009


Vegetational Change and Ice-Wedge Polygons through the Thaw-Lake Cycle in Arctic Alaska
journal, November 1980

  • Billings, W. D.; Peterson, K. M.
  • Arctic and Alpine Research, Vol. 12, Issue 4
  • DOI: 10.2307/1550492

Patterns in vegetation composition, surface height and thaw depth in polygon mires in the Yakutian Arctic (NE Siberia): a microtopographical characterisation of the active layer
journal, October 2009

  • Minke, Merten; Donner, Norman; Karpov, Nikolay
  • Permafrost and Periglacial Processes, Vol. 20, Issue 4
  • DOI: 10.1002/ppp.663

CH 4 emission from different stages of thermokarst formation in Central Yakutia, East Siberia
journal, August 2009


Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes
journal, July 2013

  • Torre Jorgenson, M.; Harden, Jennifer; Kanevskiy, Mikhail
  • Environmental Research Letters, Vol. 8, Issue 3
  • DOI: 10.1088/1748-9326/8/3/035017

Vegetation height and other controls of spatial variability in methane emissions from the Arctic coastal tundra at Barrow, Alaska
journal, January 2010

  • von Fischer, Joseph C.; Rhew, Robert C.; Ames, Gregory M.
  • Journal of Geophysical Research, Vol. 115
  • DOI: 10.1029/2009JG001283

The relative importance of methanogenesis in the decomposition of organic matter in northern peatlands: Relative Importance of Methanogenesis
journal, February 2015

  • Corbett, J. Elizabeth; Tfaily, Malak M.; Burdige, David J.
  • Journal of Geophysical Research: Biogeosciences, Vol. 120, Issue 2
  • DOI: 10.1002/2014JG002797

Pathways of anaerobic organic matter decomposition in tundra soils from Barrow, Alaska: BIOGEOCHEMISTRY OF ANOXIC ARCTIC TUNDRA
journal, November 2015

  • Herndon, Elizabeth M.; Mann, Benjamin F.; Roy Chowdhury, Taniya
  • Journal of Geophysical Research: Biogeosciences, Vol. 120, Issue 11
  • DOI: 10.1002/2015JG003147

Controls on methane released through ebullition in peatlands affected by permafrost degradation: Ebullition in peatlands with thermokarst
journal, March 2014

  • Klapstein, Sara J.; Turetsky, Merritt R.; McGuire, A. David
  • Journal of Geophysical Research: Biogeosciences, Vol. 119, Issue 3
  • DOI: 10.1002/2013JG002441

Permafrost thaw and soil moisture driving CO 2 and CH 4 release from upland tundra
journal, March 2015

  • Natali, Susan M.; Schuur, Edward A. G.; Mauritz, Marguerite
  • Journal of Geophysical Research: Biogeosciences, Vol. 120, Issue 3
  • DOI: 10.1002/2014JG002872

Environmental factors controlling methane emissions from peatlands in northern Minnesota
journal, January 1993

  • Dise, Nancy B.; Gorham, Eville; Verry, Elon S.
  • Journal of Geophysical Research, Vol. 98, Issue D6
  • DOI: 10.1029/93JD00160

Identifying multiscale zonation and assessing the relative importance of polygon geomorphology on carbon fluxes in an Arctic tundra ecosystem: ZONATION APPROACH IN AN ARCTIC ECOSYSTEM
journal, April 2015

  • Wainwright, Haruko M.; Dafflon, Baptiste; Smith, Lydia J.
  • Journal of Geophysical Research: Biogeosciences, Vol. 120, Issue 4
  • DOI: 10.1002/2014JG002799

Works referencing / citing this record:

Landscape topography structures the soil microbiome in arctic polygonal tundra
journal, February 2018


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.