skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Variational projection methods for gradient crystal plasticity using Lie algebras: PROJECTION METHODS FOR GRADIENT CRYSTAL PLASTICITY

Authors:
ORCiD logo [1];  [1]
  1. Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, 318 John D. Tickle Engineering Building 37921 Knoxville TN USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1401475
Grant/Contract Number:  
AC05-000R22725
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
International Journal for Numerical Methods in Engineering
Additional Journal Information:
Journal Name: International Journal for Numerical Methods in Engineering Journal Volume: 110 Journal Issue: 4; Journal ID: ISSN 0029-5981
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
United Kingdom
Language:
English

Citation Formats

Truster, Timothy J., and Nassif, Omar. Variational projection methods for gradient crystal plasticity using Lie algebras: PROJECTION METHODS FOR GRADIENT CRYSTAL PLASTICITY. United Kingdom: N. p., 2016. Web. doi:10.1002/nme.5355.
Truster, Timothy J., & Nassif, Omar. Variational projection methods for gradient crystal plasticity using Lie algebras: PROJECTION METHODS FOR GRADIENT CRYSTAL PLASTICITY. United Kingdom. doi:10.1002/nme.5355.
Truster, Timothy J., and Nassif, Omar. Wed . "Variational projection methods for gradient crystal plasticity using Lie algebras: PROJECTION METHODS FOR GRADIENT CRYSTAL PLASTICITY". United Kingdom. doi:10.1002/nme.5355.
@article{osti_1401475,
title = {Variational projection methods for gradient crystal plasticity using Lie algebras: PROJECTION METHODS FOR GRADIENT CRYSTAL PLASTICITY},
author = {Truster, Timothy J. and Nassif, Omar},
abstractNote = {},
doi = {10.1002/nme.5355},
journal = {International Journal for Numerical Methods in Engineering},
number = 4,
volume = 110,
place = {United Kingdom},
year = {2016},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1002/nme.5355

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Superconvergent second derivative recovery technique and its application in a nonlocal damage mechanics model
journal, August 2013


The exact derivative of the exponential of an unsymmetric tensor
journal, January 2001


Consideration of grain-size effect and kinetics in the plastic deformation of metal polycrystals
journal, August 2000


Validation of a crystal plasticity model using high energy diffraction microscopy
journal, February 2012

  • Beaudoin, A. J.; Obstalecki, M.; Storer, R.
  • Modelling and Simulation in Materials Science and Engineering, Vol. 20, Issue 2
  • DOI: 10.1088/0965-0393/20/2/024006

Dislocation-based micropolar single crystal plasticity: Comparison of multi- and single criterion theories
journal, February 2011

  • Mayeur, Jason R.; McDowell, David L.; Bammann, Douglas J.
  • Journal of the Mechanics and Physics of Solids, Vol. 59, Issue 2
  • DOI: 10.1016/j.jmps.2010.09.013

Bending of a single crystal: discrete dislocation and nonlocal crystal plasticity simulations
journal, September 2004

  • Yefimov, S.; Giessen, E. Van der; Groma, I.
  • Modelling and Simulation in Materials Science and Engineering, Vol. 12, Issue 6
  • DOI: 10.1088/0965-0393/12/6/002

A direct finite element implementation of the gradient-dependent theory
journal, January 2005

  • Abu Al-Rub, Rashid K.; Voyiadjis, George Z.
  • International Journal for Numerical Methods in Engineering, Vol. 63, Issue 4
  • DOI: 10.1002/nme.1303

A polycrystal plasticity model based on the mechanical threshold
journal, October 2002


F-bar-based linear triangles and tetrahedra for finite strain analysis of nearly incompressible solids. Part I: formulation and benchmarking
journal, January 2005

  • Neto, E. A. de Souza; Pires, F. M. Andrade; Owen, D. R. J.
  • International Journal for Numerical Methods in Engineering, Vol. 62, Issue 3
  • DOI: 10.1002/nme.1187

Three dimensional predictions of grain scale plasticity and grain boundaries using crystal plasticity finite element models
journal, August 2014

  • Knezevic, Marko; Drach, Borys; Ardeljan, Milan
  • Computer Methods in Applied Mechanics and Engineering, Vol. 277
  • DOI: 10.1016/j.cma.2014.05.003

Finite element analysis of geometrically necessary dislocations in crystal plasticity: FINITE ELEMENT ANALYSIS OF GNDS IN CRYSTAL PLASTICITY
journal, June 2012

  • Hurtado, Daniel E.; Ortiz, Michael
  • International Journal for Numerical Methods in Engineering, Vol. 93, Issue 1
  • DOI: 10.1002/nme.4376

Geometrically necessary dislocations, hardening, and a simple gradient theory of crystal plasticity
journal, January 2003


Super-convergent second derivative recovery for lower-order strain gradient plasticity
journal, April 2014


A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity
journal, November 2006

  • Bayley, C. J.; Brekelmans, W. A. M.; Geers, M. G. D.
  • International Journal of Solids and Structures, Vol. 43, Issue 24
  • DOI: 10.1016/j.ijsolstr.2006.05.011

A study of microstructural length scale effects on the behaviour of FCC polycrystals using strain gradient concepts
journal, September 2005


Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage
journal, March 2009


An explicit finite element approach with patch projection technique for strain gradient plasticity formulations
journal, August 2011


Consistent crystal plasticity kinematics and linearization for the implicit finite element method
journal, August 2015

  • Messner, Mark; Beaudoin, Armand; Dodds, Robert
  • Engineering Computations, Vol. 32, Issue 6
  • DOI: 10.1108/EC-05-2014-0107

Finite element implementation of a generalised non-local rate-dependent crystallographic formulation for finite strains
journal, January 2001


A discontinuous Galerkin formulation for classical and gradient plasticity – Part 1: Formulation and analysis
journal, August 2007

  • Djoko, J. K.; Ebobisse, F.; McBride, A. T.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 196, Issue 37-40
  • DOI: 10.1016/j.cma.2006.10.045

Gradient plasticity theory with a variable length scale parameter
journal, July 2005


Strain gradient plasticity: Theory and experiment
journal, February 1994


Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation
journal, November 2002

  • Evers, L. P.; Parks, D. M.; Brekelmans, W. A. M.
  • Journal of the Mechanics and Physics of Solids, Vol. 50, Issue 11
  • DOI: 10.1016/S0022-5096(02)00032-7

Dynamic explicit solution for higher-order crystal plasticity theories
journal, February 2014


On the development of stage IV hardening using a model based on the mechanical threshold
journal, April 2002


Numerical integration of rate constitutive equations in finite deformation analysis
journal, October 1983

  • Pinsky, Peter M.; Ortiz, Miguel; Pister, Karl S.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 40, Issue 2
  • DOI: 10.1016/0045-7825(83)90087-7

Influence of in-grain mesh resolution on the prediction of deformation textures in fcc polycrystals by crystal plasticity FEM
journal, April 2007


The Deformation and Ageing of Mild Steel: III Discussion of Results
journal, September 1951


A Finite Element approach with patch projection for strain gradient plasticity formulations
journal, April 2007


Gradient crystal plasticity including dislocation-based work-hardening and dislocation transport
journal, June 2015


Lie-group interpolation and variational recovery for internal variables
journal, June 2013


A microbend test method for measuring the plasticity length scale
journal, September 1998


A note on mass lumping and related processes in the finite element method
journal, January 1976

  • Hinton, E.; Rock, T.; Zienkiewicz, O. C.
  • Earthquake Engineering & Structural Dynamics, Vol. 4, Issue 3
  • DOI: 10.1002/eqe.4290040305

A framework for residual-based stabilization of incompressible finite elasticity: Stabilized formulations and <mml:math altimg="si67.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>F</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow></mml:math> methods for linear triangles and tetrahedra
journal, December 2013

  • Masud, Arif; Truster, Timothy J.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 267
  • DOI: 10.1016/j.cma.2013.08.010

A discrete dislocation analysis of bending
journal, January 1999

  • Cleveringa, H. H. M.; Van der Giessen, E.; Needleman, A.
  • International Journal of Plasticity, Vol. 15, Issue 8
  • DOI: 10.1016/S0749-6419(99)00013-3

Some geometrical relations in dislocated crystals
journal, March 1953


A simple error estimator and adaptive procedure for practical engineerng analysis
journal, February 1987

  • Zienkiewicz, O. C.; Zhu, J. Z.
  • International Journal for Numerical Methods in Engineering, Vol. 24, Issue 2
  • DOI: 10.1002/nme.1620240206

Adaptive mesh refinement in strain localization problems
journal, September 1991


Finite deformation plasticity based on the additive split of the rate of deformation and hyperelasticity
journal, October 2000


Mechanics of dislocation pile-ups: A unification of scaling regimes
journal, October 2014

  • Scardia, L.; Peerlings, R. H. J.; Peletier, M. A.
  • Journal of the Mechanics and Physics of Solids, Vol. 70
  • DOI: 10.1016/j.jmps.2014.04.014

A discontinuous Galerkin formulation for classical and gradient plasticity. Part 2: Algorithms and numerical analysis
journal, December 2007

  • Djoko, J. K.; Ebobisse, F.; McBride, A. T.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 197, Issue 1-4
  • DOI: 10.1016/j.cma.2007.06.027