DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electricity generation by Pyrococcus furiosus in microbial fuel cells operated at 90°C

Abstract

ABSTRACT Hyperthermophiles are microorganisms that thrive in extremely hot environments with temperatures near and even above 100°C. They are the most deeply rooted microorganisms on phylogenetic trees suggesting they may have evolved to survive in the early hostile earth. The simple respiratory systems of some of these hyperthermophiles make them potential candidates to develop microbial fuel cells (MFC) that can generate power at temperatures approaching the boiling point. We explored extracellular electron transfer in the hyperthermophilic archaeon Pyrococcus furiosus ( Pf ) by studying its ability to generate electricity in a two‐chamber MFC. Pf growing in defined medium functioned as an anolyte in a MFC operated at 90°C, generating a maximum current density of 2 A m −2 and a peak power density of 225 mW m −2 without the addition of any external redox mediator. Electron microscopy and electrochemical impedance spectroscopy of the anode with the attached Pf biofilm demonstrated bio‐electrochemical behavior that led to electricity generation in the MFC via direct electron transfer. This proof of concept study reveals for the first time that a hyperthermophile such as Pf can generate electricity in MFC at extreme temperatures. Biotechnol. Bioeng. 2017;114: 1419–1427. © 2017 Wiley Periodicals, Inc.

Authors:
ORCiD logo [1];  [2];  [2];  [1]
  1. Nano Electrochemistry Laboratory, College of Engineering University of Georgia Athens Georgia 30602
  2. Department of Biochemistry and Molecular Biology University of Georgia Athens Georgia 30602
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1401277
Grant/Contract Number:  
DE‐FG05‐95ER20175
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Biotechnology and Bioengineering
Additional Journal Information:
Journal Name: Biotechnology and Bioengineering Journal Volume: 114 Journal Issue: 7; Journal ID: ISSN 0006-3592
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
United States
Language:
English

Citation Formats

Sekar, Narendran, Wu, Chang‐Hao, Adams, Michael W. W., and Ramasamy, Ramaraja P. Electricity generation by Pyrococcus furiosus in microbial fuel cells operated at 90°C. United States: N. p., 2017. Web. doi:10.1002/bit.26271.
Sekar, Narendran, Wu, Chang‐Hao, Adams, Michael W. W., & Ramasamy, Ramaraja P. Electricity generation by Pyrococcus furiosus in microbial fuel cells operated at 90°C. United States. https://doi.org/10.1002/bit.26271
Sekar, Narendran, Wu, Chang‐Hao, Adams, Michael W. W., and Ramasamy, Ramaraja P. Fri . "Electricity generation by Pyrococcus furiosus in microbial fuel cells operated at 90°C". United States. https://doi.org/10.1002/bit.26271.
@article{osti_1401277,
title = {Electricity generation by Pyrococcus furiosus in microbial fuel cells operated at 90°C},
author = {Sekar, Narendran and Wu, Chang‐Hao and Adams, Michael W. W. and Ramasamy, Ramaraja P.},
abstractNote = {ABSTRACT Hyperthermophiles are microorganisms that thrive in extremely hot environments with temperatures near and even above 100°C. They are the most deeply rooted microorganisms on phylogenetic trees suggesting they may have evolved to survive in the early hostile earth. The simple respiratory systems of some of these hyperthermophiles make them potential candidates to develop microbial fuel cells (MFC) that can generate power at temperatures approaching the boiling point. We explored extracellular electron transfer in the hyperthermophilic archaeon Pyrococcus furiosus ( Pf ) by studying its ability to generate electricity in a two‐chamber MFC. Pf growing in defined medium functioned as an anolyte in a MFC operated at 90°C, generating a maximum current density of 2 A m −2 and a peak power density of 225 mW m −2 without the addition of any external redox mediator. Electron microscopy and electrochemical impedance spectroscopy of the anode with the attached Pf biofilm demonstrated bio‐electrochemical behavior that led to electricity generation in the MFC via direct electron transfer. This proof of concept study reveals for the first time that a hyperthermophile such as Pf can generate electricity in MFC at extreme temperatures. Biotechnol. Bioeng. 2017;114: 1419–1427. © 2017 Wiley Periodicals, Inc.},
doi = {10.1002/bit.26271},
journal = {Biotechnology and Bioengineering},
number = 7,
volume = 114,
place = {United States},
year = {Fri Mar 10 00:00:00 EST 2017},
month = {Fri Mar 10 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/bit.26271

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Reduction of humic substances and Fe(III) by hyperthermophilic microorganisms
journal, September 2000


A simple energy-conserving system: Proton reduction coupled to proton translocation
journal, June 2003

  • Sapra, R.; Bagramyan, K.; Adams, M. W. W.
  • Proceedings of the National Academy of Sciences, Vol. 100, Issue 13, p. 7545-7550
  • DOI: 10.1073/pnas.1331436100

Utilizing the green alga Chlamydomonas reinhardtii for microbial electricity generation: a living solar cell
journal, February 2005

  • Rosenbaum, Miriam; Schröder, Uwe; Scholz, Fritz
  • Applied Microbiology and Biotechnology, Vol. 68, Issue 6
  • DOI: 10.1007/s00253-005-1915-4

On the Potential for Bioenergy and Biofuels from Hydrothermal Vent Microbes
journal, March 2012


Photocurrent generation by immobilized cyanobacteria via direct electron transport in photo-bioelectrochemical cells
journal, January 2014

  • Sekar, Narendran; Umasankar, Yogeswaran; Ramasamy, Ramaraja P.
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 17
  • DOI: 10.1039/c4cp00494a

Biofilm and Nanowire Production Leads to Increased Current in Geobacter sulfurreducens Fuel Cells
journal, August 2006

  • Reguera, G.; Nevin, K. P.; Nicoll, J. S.
  • Applied and Environmental Microbiology, Vol. 72, Issue 11
  • DOI: 10.1128/AEM.01444-06

Microbiological evidence for Fe(III) reduction on early Earth
journal, September 1998

  • Vargas, Madeline; Kashefi, Kazem; Blunt-Harris, Elizabeth L.
  • Nature, Vol. 395, Issue 6697
  • DOI: 10.1038/25720

Reinvestigation of the Steady-State Kinetics and Physiological Function of the Soluble NiFe-Hydrogenase I of Pyrococcus furiosus
journal, December 2007

  • van Haaster, D. J.; Silva, P. J.; Hagedoorn, P. -L.
  • Journal of Bacteriology, Vol. 190, Issue 5
  • DOI: 10.1128/JB.01562-07

Role of the photosynthetic electron transfer chain in electrogenic activity of cyanobacteria
journal, April 2011

  • Pisciotta, John M.; Zou, YongJin; Baskakov, Ilia V.
  • Applied Microbiology and Biotechnology, Vol. 91, Issue 2
  • DOI: 10.1007/s00253-011-3239-x

Electricity generation by thermophilic microorganisms from marine sediment
journal, December 2007

  • Mathis, B. J.; Marshall, C. W.; Milliken, C. E.
  • Applied Microbiology and Biotechnology, Vol. 78, Issue 1
  • DOI: 10.1007/s00253-007-1266-4

Microbial Fuel Cells:  Methodology and Technology
journal, September 2006

  • Logan, Bruce E.; Hamelers, Bert; Rozendal, René
  • Environmental Science & Technology, Vol. 40, Issue 17, p. 5181-5192
  • DOI: 10.1021/es0605016

Self-Sustained Phototrophic Microbial Fuel Cells Based on the Synergistic Cooperation between Photosynthetic Microorganisms and Heterotrophic Bacteria
journal, March 2009

  • He, Zhen; Kan, Jinjun; Mansfeld, Florian
  • Environmental Science & Technology, Vol. 43, Issue 5
  • DOI: 10.1021/es803084a

Characterization of Hydrogenase II from the Hyperthermophilic Archaeon Pyrococcus furiosus and Assessment of Its Role in Sulfur Reduction
journal, April 2000


Transcriptional and Biochemical Analysis of Starch Metabolism in the Hyperthermophilic Archaeon Pyrococcus furiosus
journal, March 2006


Natural Competence in the Hyperthermophilic Archaeon Pyrococcus furiosus Facilitates Genetic Manipulation: Construction of Markerless Deletions of Genes Encoding the Two Cytoplasmic Hydrogenases
journal, February 2011

  • Lipscomb, Gina L.; Stirrett, Karen; Schut, Gerrit J.
  • Applied and Environmental Microbiology, Vol. 77, Issue 7, p. 2232-2238
  • DOI: 10.1128/AEM.02624-10

Microbial ferric iron reductases
journal, June 2003


The Mode of Cell Wall Growth in Selected Archaea Is Similar to the General Mode of Cell Wall Growth in Bacteria as Revealed by Fluorescent Dye Analysis
journal, December 2010

  • Wirth, Reinhard; Bellack, Annett; Bertl, Markus
  • Applied and Environmental Microbiology, Vol. 77, Issue 5
  • DOI: 10.1128/AEM.02423-10

Operational parameters affecting the performannce of a mediator-less microbial fuel cell
journal, April 2003


Cellobiose Uptake in the Hyperthermophilic Archaeon Pyrococcus furiosus Is Mediated by an Inducible, High-Affinity ABC Transporter
journal, September 2001


Evaluation of procedures to acclimate a microbial fuel cell for electricity production
journal, January 2005

  • Kim, Jung Rae; Min, Booki; Logan, Bruce E.
  • Applied Microbiology and Biotechnology, Vol. 68, Issue 1
  • DOI: 10.1007/s00253-004-1845-6

In Situ Electrooxidation of Photobiological Hydrogen in a Photobioelectrochemical Fuel Cell Based on Rhodobacter sphaeroides
journal, August 2005

  • Rosenbaum, Miriam; Schröder, Uwe; Scholz, Fritz
  • Environmental Science & Technology, Vol. 39, Issue 16
  • DOI: 10.1021/es0505447

Continous hydrogen production by immobilized whole cells of Clostridium butyricum
journal, September 1976

  • Karube, Isao; Matsunaga, Tadashi; Tsuru, Shinya
  • Biochimica et Biophysica Acta (BBA) - General Subjects, Vol. 444, Issue 2
  • DOI: 10.1016/0304-4165(76)90376-7

Microbial Fuel Cells—Challenges and Applications
journal, September 2006

  • Logan, Bruce E.; Regan, John M.
  • Environmental Science & Technology, Vol. 40, Issue 17
  • DOI: 10.1021/es0627592

Electromicrobiology
journal, October 2012


Shewanella secretes flavins that mediate extracellular electron transfer
journal, March 2008

  • Marsili, E.; Baron, D. B.; Shikhare, I. D.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 10
  • DOI: 10.1073/pnas.0710525105

Defining Genes in the Genome of the Hyperthermophilic Archaeon Pyrococcus furiosus: Implications for All Microbial Genomes
journal, October 2005


C-Type Cytochromes Wire Electricity-Producing Bacteria to Electrodes
journal, June 2008

  • Busalmen, Juan P.; Esteve-Núñez, Abraham; Berná, Antonio
  • Angewandte Chemie International Edition, Vol. 47, Issue 26
  • DOI: 10.1002/anie.200801310

Bioelectrochemical analysis of a hyperthermophilic microbial fuel cell generating electricity at temperatures above 80 °C
journal, February 2015


Hydrogen production from pyruvate by enzymes purified from the hyperthermophilic archaeon, Pyrococcus furiosus : A key role for NADPH
journal, October 1994


Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C
journal, June 1986

  • Fiala, Gerhard; Stetter, Karl O.
  • Archives of Microbiology, Vol. 145, Issue 1, p. 56-61
  • DOI: 10.1007/BF00413027

Sugar metabolism of hyperthermophiles
journal, May 1996


A Thermophilic Gram-Negative Nitrate-Reducing Bacterium, Calditerrivibrio nitroreducens , Exhibiting Electricity Generation Capability
journal, October 2013

  • Fu, Qian; Kobayashi, Hajime; Kawaguchi, Hideo
  • Environmental Science & Technology, Vol. 47, Issue 21
  • DOI: 10.1021/es402749f

[18] Hydrogenases I and II from Pyrococcus furiosus
book, January 2001


Quantitative analysis of the factors limiting solar power transduction by Synechocystis sp. PCC 6803 in biological photovoltaic devices
journal, January 2011

  • Bombelli, Paolo; Bradley, Robert W.; Scott, Amanda M.
  • Energy & Environmental Science, Vol. 4, Issue 11
  • DOI: 10.1039/c1ee02531g

Enhanced photo-bioelectrochemical energy conversion by genetically engineered cyanobacteria: Enhanced Photo-Bioelectrochemical Energy Conversion
journal, September 2015

  • Sekar, Narendran; Jain, Rachit; Yan, Yajun
  • Biotechnology and Bioengineering, Vol. 113, Issue 3
  • DOI: 10.1002/bit.25829

Reductive Precipitation of Gold by Dissimilatory Fe(III)-Reducing Bacteria and Archaea
journal, July 2001


Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium, Thermincola ferriacetica
journal, January 2009

  • Marshall, Christopher W.; May, Harold D.
  • Energy & Environmental Science, Vol. 2, Issue 6
  • DOI: 10.1039/b823237g

S-Layer Proteins
journal, February 2000


Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide
journal, March 2013

  • Keller, M. W.; Schut, G. J.; Lipscomb, G. L.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 15, p. 5840-5845
  • DOI: 10.1073/pnas.1222607110

Layer-by-layer self-assembly of PDDA/PWA–Nafion composite membranes for direct methanol fuel cells
journal, January 2010

  • Yang, Meng; Lu, Shanfu; Lu, Jinlin
  • Chemical Communications, Vol. 46, Issue 9
  • DOI: 10.1039/b912779h

Electrical Effects Accompanying the Decomposition of Organic Compounds
journal, September 1911

  • Potter, M. C.
  • Proceedings of the Royal Society B: Biological Sciences, Vol. 84, Issue 571
  • DOI: 10.1098/rspb.1911.0073

Flagella of Pyrococcus furiosus: Multifunctional Organelles, Made for Swimming, Adhesion to Various Surfaces, and Cell-Cell Contacts
journal, September 2006

  • Nather, D. J.; Rachel, R.; Wanner, G.
  • Journal of Bacteriology, Vol. 188, Issue 19, p. 6915-6923
  • DOI: 10.1128/JB.00527-06

A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells
journal, September 2008

  • Wrighton, Kelly C.; Agbo, Peter; Warnecke, Falk
  • The ISME Journal, Vol. 2, Issue 11
  • DOI: 10.1038/ismej.2008.48

Comparative study of three types of microbial fuel cell
journal, July 2005


Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction
journal, October 2006

  • Weber, Karrie A.; Achenbach, Laurie A.; Coates, John D.
  • Nature Reviews Microbiology, Vol. 4, Issue 10, p. 752-764
  • DOI: 10.1038/nrmicro1490

Key Role for Sulfur in Peptide Metabolism and in Regulation of Three Hydrogenases in the Hyperthermophilic Archaeon Pyrococcus furiosus
journal, January 2001


Towards effective small scale microbial fuel cells for energy generation from urine
journal, February 2016


The microbe electric: conversion of organic matter to electricity
journal, December 2008


Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system
journal, January 2011

  • McCormick, Alistair J.; Bombelli, Paolo; Scott, Amanda M.
  • Energy & Environmental Science, Vol. 4, Issue 11
  • DOI: 10.1039/c1ee01965a

Engineering materials and biology to boost performance of microbial fuel cells: a critical review
journal, January 2008

  • Rinaldi, Antonio; Mecheri, Barbara; Garavaglia, Virgilio
  • Energy & Environmental Science, Vol. 1, Issue 4
  • DOI: 10.1039/b806498a

Exploring Extracellular Electron Transfer in Hyperthermophiles for Electrochemical Energy Conversion
journal, July 2016


Power Generation Using Different Cation, Anion, and Ultrafiltration Membranes in Microbial Fuel Cells
journal, February 2007

  • Kim, Jung Rae; Cheng, Shaoan; Oh, Sang-Eun
  • Environmental Science & Technology, Vol. 41, Issue 3
  • DOI: 10.1021/es062202m

Minimizing losses in bio-electrochemical systems: the road to applications
journal, May 2008

  • Clauwaert, Peter; Aelterman, Peter; Pham, The Hai
  • Applied Microbiology and Biotechnology, Vol. 79, Issue 6, p. 901-913
  • DOI: 10.1007/s00253-008-1522-2

Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms
journal, July 2006

  • Gorby, Y. A.; Yanina, S.; McLean, J. S.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 30
  • DOI: 10.1073/pnas.0604517103

Cathode Performance as a Factor in Electricity Generation in Microbial Fuel Cells
journal, September 2004

  • Oh, SangEun; Min, Booki; Logan, Bruce E.
  • Environmental Science & Technology, Vol. 38, Issue 18
  • DOI: 10.1021/es049422p

Enzymes of hydrogen metabolism in Pyrococcus furiosus: P. furiosus enzymes of hydrogen metabolism
journal, November 2000