DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis and Electrocatalytic Activity of [FeFe]‐Hydrogenase Model Complexes with Non‐Innocent Chelating Nitrogen‐Donor Ligands

Abstract

To probe the influence of redox non‐innocent ligands on a well‐known class of [FeFe]‐hydrogenase models, three new asymmetrically disubstituted diiron complexes of the general formula (µ‐SRS)[Fe(CO) 3 ][Fe(CO)(N‐N)] {SRS = propane‐1,3‐dithiolate (pdt) or benzene‐1,2‐dithiolate (bdt), and N‐N = 2,2′‐bipyridine (bipy) or 2,2′‐bipyrimidine (bpym)} have been synthesized from their parent hexacarbonyls and characterized. The new complexes, (µ‐pdt)Fe 2 (CO) 42 ‐bpym) ( 2 ), (µ‐bdt)Fe 2 (CO) 42 ‐bipy) ( 3 ), and (µ‐bdt)Fe 2 (CO) 42 ‐bpym) ( 4 ), were fully characterized by spectroscopic and electrochemical techniques, and the results are compared to those of a related complex, (µ‐pdt)Fe 2 (CO) 42 ‐bipy) ( 1 ). The crystal structures of 2 – 4 show that, in each complex, the two iron units are in an eclipsed orientation, and the N‐N ligand lies in the basal plane. IR spectra and electrochemical analyses indicate that electron density at the iron centers decreases in the order 1 > 2 > 3 > 4 . Furthermore, compound 2 undergoes a ligand‐centered reduction at the same potential that the hexacarbonyl precursor undergoes its first reduction. However, unlike the 2,2′‐bipy derivatives 1 and 3 , the 2,2′‐bpymmore » complexes 2 and 4 are not effective catalysts for electrochemical proton reduction from acetic acid.« less

Authors:
ORCiD logo [1];  [1];  [1]; ORCiD logo [1]
  1. School of Molecular Sciences Arizona State University 85287 Tempe Arizona USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1401057
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
European Journal of Inorganic Chemistry
Additional Journal Information:
Journal Name: European Journal of Inorganic Chemistry Journal Volume: 2017 Journal Issue: 23; Journal ID: ISSN 1434-1948
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Roy, Souvik, Laureanti, Joseph A., Groy, Thomas L., and Jones, Anne K. Synthesis and Electrocatalytic Activity of [FeFe]‐Hydrogenase Model Complexes with Non‐Innocent Chelating Nitrogen‐Donor Ligands. Germany: N. p., 2017. Web. doi:10.1002/ejic.201700123.
Roy, Souvik, Laureanti, Joseph A., Groy, Thomas L., & Jones, Anne K. Synthesis and Electrocatalytic Activity of [FeFe]‐Hydrogenase Model Complexes with Non‐Innocent Chelating Nitrogen‐Donor Ligands. Germany. https://doi.org/10.1002/ejic.201700123
Roy, Souvik, Laureanti, Joseph A., Groy, Thomas L., and Jones, Anne K. Fri . "Synthesis and Electrocatalytic Activity of [FeFe]‐Hydrogenase Model Complexes with Non‐Innocent Chelating Nitrogen‐Donor Ligands". Germany. https://doi.org/10.1002/ejic.201700123.
@article{osti_1401057,
title = {Synthesis and Electrocatalytic Activity of [FeFe]‐Hydrogenase Model Complexes with Non‐Innocent Chelating Nitrogen‐Donor Ligands},
author = {Roy, Souvik and Laureanti, Joseph A. and Groy, Thomas L. and Jones, Anne K.},
abstractNote = {To probe the influence of redox non‐innocent ligands on a well‐known class of [FeFe]‐hydrogenase models, three new asymmetrically disubstituted diiron complexes of the general formula (µ‐SRS)[Fe(CO) 3 ][Fe(CO)(N‐N)] {SRS = propane‐1,3‐dithiolate (pdt) or benzene‐1,2‐dithiolate (bdt), and N‐N = 2,2′‐bipyridine (bipy) or 2,2′‐bipyrimidine (bpym)} have been synthesized from their parent hexacarbonyls and characterized. The new complexes, (µ‐pdt)Fe 2 (CO) 4 (κ 2 ‐bpym) ( 2 ), (µ‐bdt)Fe 2 (CO) 4 (κ 2 ‐bipy) ( 3 ), and (µ‐bdt)Fe 2 (CO) 4 (κ 2 ‐bpym) ( 4 ), were fully characterized by spectroscopic and electrochemical techniques, and the results are compared to those of a related complex, (µ‐pdt)Fe 2 (CO) 4 (κ 2 ‐bipy) ( 1 ). The crystal structures of 2 – 4 show that, in each complex, the two iron units are in an eclipsed orientation, and the N‐N ligand lies in the basal plane. IR spectra and electrochemical analyses indicate that electron density at the iron centers decreases in the order 1 > 2 > 3 > 4 . Furthermore, compound 2 undergoes a ligand‐centered reduction at the same potential that the hexacarbonyl precursor undergoes its first reduction. However, unlike the 2,2′‐bipy derivatives 1 and 3 , the 2,2′‐bpym complexes 2 and 4 are not effective catalysts for electrochemical proton reduction from acetic acid.},
doi = {10.1002/ejic.201700123},
journal = {European Journal of Inorganic Chemistry},
number = 23,
volume = 2017,
place = {Germany},
year = {Fri Apr 07 00:00:00 EDT 2017},
month = {Fri Apr 07 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/ejic.201700123

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Hydrogen Generation from Weak Acids:  Electrochemical and Computational Studies of a Diiron Hydrogenase Mimic
journal, October 2007

  • Felton, Greg A. N.; Vannucci, Aaron K.; Chen, Jinzhu
  • Journal of the American Chemical Society, Vol. 129, Issue 41
  • DOI: 10.1021/ja073886g

Biomimetic assembly and activation of [FeFe]-hydrogenases
journal, June 2013

  • Berggren, G.; Adamska, A.; Lambertz, C.
  • Nature, Vol. 499, Issue 7456
  • DOI: 10.1038/nature12239

Influence of an electron-deficient bridging o-carborane on the electronic properties of an [FeFe] hydrogenase active site model
journal, January 2008

  • Schwartz, Lennart; Eriksson, Lars; Lomoth, Reiner
  • Dalton Transactions, Issue 18
  • DOI: 10.1039/b802908n

Use of 1,10-phenanthroline in diiron dithiolate derivatives related to the [Fe–Fe] hydrogenase active site
journal, January 2007

  • Orain, Pierre-Yves; Capon, Jean-François; Kervarec, Nelly
  • Dalton Transactions, Issue 34
  • DOI: 10.1039/b709287c

Ligand Design for Electrochemically Controlling Stoichiometric and Catalytic Reactivity of Transition Metals
journal, April 1998


Activation of proton by the two-electron reduction of a di-iron organometallic complex
journal, September 2006

  • Capon, Jean-François; Gloaguen, Frédéric; Schollhammer, Philippe
  • Journal of Electroanalytical Chemistry, Vol. 595, Issue 1
  • DOI: 10.1016/j.jelechem.2006.06.005

Redox active iron nitrosyl units in proton reduction electrocatalysis
journal, May 2014

  • Hsieh, Chung-Hung; Ding, Shengda; Erdem, Özlen F.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4684

N-Heterocyclic Carbene Ligands in Nonsymmetric Diiron Models of Hydrogenase Active Sites
journal, April 2007

  • Morvan, Didier; Capon, Jean-François; Gloaguen, Frédéric
  • Organometallics, Vol. 26, Issue 8
  • DOI: 10.1021/om061173l

Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: structure/function relationships
journal, January 2003

  • Chong, Daesung; Georgakaki, Irene P.; Mejia-Rodriguez, Rosario
  • Dalton Trans., Issue 21
  • DOI: 10.1039/B304283A

Synthesis of the H-cluster framework of iron-only hydrogenase
journal, February 2005

  • Tard, Cédric; Liu, Xiaoming; Ibrahim, Saad K.
  • Nature, Vol. 433, Issue 7026
  • DOI: 10.1038/nature03298

Noninnocence in Metal Complexes: A Dithiolene Dawn
journal, October 2011

  • Eisenberg, Richard; Gray, Harry B.
  • Inorganic Chemistry, Vol. 50, Issue 20
  • DOI: 10.1021/ic2011748

Hydrogenase biomimetics: Fe 2 (CO) 4 (μ-dppf)(μ-pdt) (dppf = 1,1′-bis(diphenylphosphino)ferrocene) both a proton-reduction and hydrogen oxidation catalyst
journal, January 2014

  • Ghosh, Shishir; Hogarth, Graeme; Hollingsworth, Nathan
  • Chem. Commun., Vol. 50, Issue 8
  • DOI: 10.1039/C3CC46456C

Electrogenerated chemiluminescence. XIII. Electrochemical and electrogenerated chemiluminescence studies of ruthenium chelates
journal, October 1973

  • Tokel-Takvoryan, Nurhan E.; Hemingway, Ronald E.; Bard, Allen J.
  • Journal of the American Chemical Society, Vol. 95, Issue 20
  • DOI: 10.1021/ja00801a011

Biomimetic peptide-based models of [FeFe]-hydrogenases: utilization of phosphine-containing peptides
journal, January 2015

  • Roy, Souvik; Nguyen, Thuy-Ai D.; Gan, Lu
  • Dalton Transactions, Vol. 44, Issue 33
  • DOI: 10.1039/C5DT01796C

Evidence for the Formation of Terminal Hydrides by Protonation of an Asymmetric Iron Hydrogenase Active Site Mimic
journal, April 2007

  • Ezzaher, Salah; Capon, Jean-François; Gloaguen, Frédéric
  • Inorganic Chemistry, Vol. 46, Issue 9
  • DOI: 10.1021/ic0703124

A systematic electrochemical and spectroscopic study of mixed-ligand ruthenium(II) 2,2′-bipyridine complexes [Ru(bpy)3-nLn]2+ (n=0,1,2 and 3)
journal, September 1984

  • Ohsawa, Y.; Hanck, K. W.; DeArmond, M. K.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 175, Issue 1-2
  • DOI: 10.1016/S0022-0728(84)80358-7

Utilization of Non-Innocent Redox Ligands in [FeFe] Hydrogenase Modeling for Hydrogen Production
journal, October 2015


Electrochemical and theoretical investigations of the reduction of [Fe2(CO)5L{µ-SCH2XCH2S}] complexes related to [FeFe] hydrogenase
journal, January 2007

  • Capon, Jean-François; Ezzaher, Salah; Gloaguen, Frédéric
  • New Journal of Chemistry, Vol. 31, Issue 12
  • DOI: 10.1039/b709273c

Powering the planet with solar fuel
journal, April 2009


De Novo Design of Synthetic Di-Iron(I) Complexes as Structural Models of the Reduced Form of Iron−Iron Hydrogenase
journal, February 2006

  • Tye, Jesse W.; Darensbourg, Marcetta Y.; Hall, Michael B.
  • Inorganic Chemistry, Vol. 45, Issue 4
  • DOI: 10.1021/ic051231f

Mixed-valence [FeIFeII] hydrogenase active site model complexes stabilized by a bidentate carborane bis-phosphine ligand
journal, January 2012

  • Karnahl, Michael; Tschierlei, Stefanie; Erdem, Özlen F.
  • Dalton Transactions, Vol. 41, Issue 40
  • DOI: 10.1039/c2dt31192e

Hydrogen Production Catalyzed by Bidirectional, Biomimetic Models of the [FeFe]-Hydrogenase Active Site
journal, June 2014

  • Lansing, James C.; Camara, James M.; Gray, Danielle E.
  • Organometallics, Vol. 33, Issue 20
  • DOI: 10.1021/om5004013

Carbon Monoxide and Cyanide Ligands in a Classical Organometallic Complex Model for Fe-Only Hydrogenase
journal, November 1999


2,2′-Bipyrimidine- and 2,3-bis(2-pyridyl)pyrazine-containing manganese( ii ) compounds: structural and magnetic properties
journal, January 2003

  • Armentano, Donatella; de Munno, Giovanni; Guerra, Francesca
  • Dalton Trans., Issue 24
  • DOI: 10.1039/B311007A

Structural and Electronic Properties of the [FeFe] Hydrogenase H-Cluster in Different Redox and Protonation States. A DFT Investigation
journal, July 2008

  • Bruschi, Maurizio; Greco, Claudio; Fantucci, Piercarlo
  • Inorganic Chemistry, Vol. 47, Issue 13
  • DOI: 10.1021/ic8006298

Diiron chelate complexes relevant to the active site of the iron-only hydrogenase
journal, August 2008

  • Ezzaher, Salah; Capon, Jean-François; Gloaguen, Frédéric
  • Comptes Rendus Chimie, Vol. 11, Issue 8
  • DOI: 10.1016/j.crci.2008.04.002

Tuning the electronic properties of Fe2(μ-arenedithiolate)(CO)6−n(PMe3)n (n=0, 2) complexes related to the [Fe–Fe]-hydrogenase active site
journal, August 2008


Chelate Control of Diiron(I) Dithiolates Relevant to the [Fe−Fe]- Hydrogenase Active Site
journal, March 2007

  • Justice, Aaron K.; Zampella, Giuseppe; De Gioia, Luca
  • Inorganic Chemistry, Vol. 46, Issue 5
  • DOI: 10.1021/ic0618706

Pentacoordinate iron complexes as functional models of the distal iron in [FeFe] hydrogenases
journal, January 2011

  • Beyler, Maryline; Ezzaher, Salah; Karnahl, Michael
  • Chemical Communications, Vol. 47, Issue 42
  • DOI: 10.1039/c1cc14449a

Molecular Catalysis of Electrochemical Reactions. Mechanistic Aspects
journal, July 2008

  • Savéant, Jean-Michel
  • Chemical Reviews, Vol. 108, Issue 7, p. 2348-2378
  • DOI: 10.1021/cr068079z

Luminescent and Redox-Active Polynuclear Transition Metal Complexes
journal, January 1996

  • Balzani, Vincenzo; Juris, Alberto; Venturi, Margherita
  • Chemical Reviews, Vol. 96, Issue 2
  • DOI: 10.1021/cr941154y

Combining acid–base, redox and substrate binding functionalities to give a complete model for the [FeFe]-hydrogenase
journal, October 2011

  • Camara, James M.; Rauchfuss, Thomas B.
  • Nature Chemistry, Vol. 4, Issue 1
  • DOI: 10.1038/nchem.1180

Chemistry and the hydrogenases
journal, January 2003

  • Evans, David J.; Pickett, Christopher J.
  • Chemical Society Reviews, Vol. 32, Issue 5
  • DOI: 10.1039/b201317g

Hydrogenases: Hydrogen-Activating Enzymes
journal, March 2002


Catalytic Hydrogen Evolution from Mononuclear Iron(II) Carbonyl Complexes as Minimal Functional Models of the [FeFe] Hydrogenase Active Site
journal, September 2010

  • Kaur-Ghumaan, Sandeep; Schwartz, Lennart; Lomoth, Reiner
  • Angewandte Chemie International Edition, Vol. 49, Issue 43
  • DOI: 10.1002/anie.201002719

Catalytic Hydrogen Evolution by Fe(II) Carbonyls Featuring a Dithiolate and a Chelating Phosphine
journal, August 2014

  • Roy, Souvik; Mazinani, Shobeir K. S.; Groy, Thomas L.
  • Inorganic Chemistry, Vol. 53, Issue 17
  • DOI: 10.1021/ic5012988

Bipyridine:  The Most Widely Used Ligand. A Review of Molecules Comprising at Least Two 2,2‘-Bipyridine Units
journal, October 2000

  • Kaes, Christian; Katz, Alexander; Hosseini, Mir Wais
  • Chemical Reviews, Vol. 100, Issue 10
  • DOI: 10.1021/cr990376z

Making Oxygen with Ruthenium Complexes
journal, December 2009

  • Concepcion, Javier J.; Jurss, Jonah W.; Brennaman, M. Kyle
  • Accounts of Chemical Research, Vol. 42, Issue 12
  • DOI: 10.1021/ar9001526

Mimicking hydrogenases: From biomimetics to artificial enzymes
journal, July 2014

  • Simmons, Trevor R.; Berggren, Gustav; Bacchi, Marine
  • Coordination Chemistry Reviews, Vol. 270-271
  • DOI: 10.1016/j.ccr.2013.12.018

On the Structure of 2,2'-Bipyrimidine. Gas and Solid Phase Structure and Barrier to Internal Rotation.
journal, January 1981


Synthesis and Characterization of Alkali-Metal Salts of 2,2′- and 2,4′-Bipyridyl Radicals and Dianions
journal, September 2009

  • Gore-Randall, Edward; Irwin, Mark; Denning, Mark S.
  • Inorganic Chemistry, Vol. 48, Issue 17
  • DOI: 10.1021/ic9009459

Cyclic Voltammetric Studies of Chlorine-Substituted Diiron Benzenedithiolato Hexacarbonyl Electrocatalysts Inspired by the [FeFe]-Hydrogenase Active Site
journal, November 2012

  • Donovan, Elizabeth S.; McCormick, Joseph J.; Nichol, Gary S.
  • Organometallics, Vol. 31, Issue 23
  • DOI: 10.1021/om300938e

Electrochemical proton reduction by thiolate-bridged hexacarbonyldiiron clusters
journal, May 2004

  • Capon, Jean-François; Gloaguen, Frédéric; Schollhammer, Philippe
  • Journal of Electroanalytical Chemistry, Vol. 566, Issue 2
  • DOI: 10.1016/j.jelechem.2003.11.032

H 2 Evolution and Molecular Electrocatalysts: Determination of Overpotentials and Effect of Homoconjugation
journal, November 2010

  • Fourmond, Vincent; Jacques, Pierre-André; Fontecave, Marc
  • Inorganic Chemistry, Vol. 49, Issue 22
  • DOI: 10.1021/ic101187v

CO- und CN−-Liganden in einem klassischen metallorganischen Komplexmodell für reine Eisen-Hydrogenasen
journal, November 1999


Spectroscopic Characterization of the Bridging Amine in the Active Site of [FeFe] Hydrogenase Using Isotopologues of the H-Cluster
journal, September 2015

  • Adamska-Venkatesh, Agnieszka; Roy, Souvik; Siebel, Judith F.
  • Journal of the American Chemical Society, Vol. 137, Issue 40
  • DOI: 10.1021/jacs.5b06240

Biological activition of hydrogen
journal, January 1997

  • Happe, Randolph P.; Roseboom, Winfried; Pierik, Antonio J.
  • Nature, Vol. 385, Issue 6612
  • DOI: 10.1038/385126a0

Non-innocent bma ligand in a dissymetrically disubstituted diiron dithiolate related to the active site of the [FeFe] hydrogenases
journal, October 2010


Structure/Function Relationships of [NiFe]- and [FeFe]-Hydrogenases
journal, October 2007

  • Fontecilla-Camps, Juan C.; Volbeda, Anne; Cavazza, Christine
  • Chemical Reviews, Vol. 107, Issue 10
  • DOI: 10.1021/cr050195z

Electron Delocalization from the Fullerene Attachment to the Diiron Core within the Active-Site Mimics of [FeFe]Hydrogenase
journal, May 2012

  • Liu, Yu-Chiao; Yen, Tao-Hung; Tseng, Yu-Jan
  • Inorganic Chemistry, Vol. 51, Issue 11
  • DOI: 10.1021/ic3007298

Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center
journal, January 1999


On the electronic structure of the hydrogenase H-cluster
journal, January 2006

  • Schwab, David E.; Tard, Cedric; Brecht, Eric
  • Chemical Communications, Issue 35
  • DOI: 10.1039/b604994j

Small molecule mimics of hydrogenases: hydrides and redox
journal, January 2009

  • Gloaguen, Frédéric; Rauchfuss, Thomas B.
  • Chem. Soc. Rev., Vol. 38, Issue 1
  • DOI: 10.1039/B801796B

Biomimetic model for [FeFe]-hydrogenase: asymmetrically disubstituted diiron complex with a redox-active 2,2′-bipyridyl ligand
journal, January 2013

  • Roy, Souvik; Groy, Thomas L.; Jones, Anne K.
  • Dalton Transactions, Vol. 42, Issue 11
  • DOI: 10.1039/c2dt32457a

Directing protonation in [FeFe] hydrogenase active site models by modifications in their second coordination sphere
journal, January 2010

  • Ezzaher, Salah; Gogoll, Adolf; Bruhn, Clemens
  • Chemical Communications, Vol. 46, Issue 31
  • DOI: 10.1039/c0cc00724b

Katalytische Wasserstofferzeugung an einem einkernigen Eisen(II)-Carbonylkomplex als kleinstes funktionelles Modell für das aktive Zentrum von [FeFe]-Hydrogenasen
journal, September 2010

  • Kaur-Ghumaan, Sandeep; Schwartz, Lennart; Lomoth, Reiner
  • Angewandte Chemie, Vol. 122, Issue 43
  • DOI: 10.1002/ange.201002719

Structural and Functional Analogues of the Active Sites of the [Fe]-, [NiFe]-, and [FeFe]-Hydrogenases
journal, June 2009

  • Tard, Cédric; Pickett, Christopher J.
  • Chemical Reviews, Vol. 109, Issue 6
  • DOI: 10.1021/cr800542q

Hydrogenases
journal, March 2014

  • Lubitz, Wolfgang; Ogata, Hideaki; Rüdiger, Olaf
  • Chemical Reviews, Vol. 114, Issue 8
  • DOI: 10.1021/cr4005814

Hydrogenase enzymes: Recent structural studies and active site models
journal, August 2009