DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dendrite-Free Lithium Anode via a Homogenous Li-Ion Distribution Enabled by a Kimwipe Paper

Abstract

In this study, kimwipe (KW) paper is utilized, for the first time, to realize a dendrite-free Li-electrode surface. The polar functional groups of KWs facilitate a homogeneous Li-ion distribution and smooth Li redeposition. Therefore, placing a sheet of KWs on the top of a Li anode significantly improves the reversibility of Li anode.

Authors:
 [1];  [1];  [1]
  1. Univ. of Texas, Austin, TX (United States)
Publication Date:
Research Org.:
Univ. of Texas, Austin, TX (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1487278
Alternate Identifier(s):
OSTI ID: 1401041
Grant/Contract Number:  
EE0007218; DE‐EE0007218
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Sustainable Systems
Additional Journal Information:
Journal Volume: 1; Journal Issue: 1-2; Journal ID: ISSN 2366-7486
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE; Kimwipe paper; lithium anode; lithium batteries; lithium dendrites; lithium-ion distribution

Citation Formats

Chang, Chi-Hao, Chung, Sheng-Heng, and Manthiram, Arumugam. Dendrite-Free Lithium Anode via a Homogenous Li-Ion Distribution Enabled by a Kimwipe Paper. United States: N. p., 2017. Web. doi:10.1002/adsu.201600034.
Chang, Chi-Hao, Chung, Sheng-Heng, & Manthiram, Arumugam. Dendrite-Free Lithium Anode via a Homogenous Li-Ion Distribution Enabled by a Kimwipe Paper. United States. https://doi.org/10.1002/adsu.201600034
Chang, Chi-Hao, Chung, Sheng-Heng, and Manthiram, Arumugam. Tue . "Dendrite-Free Lithium Anode via a Homogenous Li-Ion Distribution Enabled by a Kimwipe Paper". United States. https://doi.org/10.1002/adsu.201600034. https://www.osti.gov/servlets/purl/1487278.
@article{osti_1487278,
title = {Dendrite-Free Lithium Anode via a Homogenous Li-Ion Distribution Enabled by a Kimwipe Paper},
author = {Chang, Chi-Hao and Chung, Sheng-Heng and Manthiram, Arumugam},
abstractNote = {In this study, kimwipe (KW) paper is utilized, for the first time, to realize a dendrite-free Li-electrode surface. The polar functional groups of KWs facilitate a homogeneous Li-ion distribution and smooth Li redeposition. Therefore, placing a sheet of KWs on the top of a Li anode significantly improves the reversibility of Li anode.},
doi = {10.1002/adsu.201600034},
journal = {Advanced Sustainable Systems},
number = 1-2,
volume = 1,
place = {United States},
year = {Tue Jan 24 00:00:00 EST 2017},
month = {Tue Jan 24 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 78 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Illustrations of (a) the Li-dendrite growth in the control cell and (b) the dendrite-suppressing behavior in the KW-protected cell.

Save / Share:

Works referenced in this record:

Polymer Nanofiber-Guided Uniform Lithium Deposition for Battery Electrodes
journal, April 2015

  • Liang, Zheng; Zheng, Guangyuan; Liu, Chong
  • Nano Letters, Vol. 15, Issue 5
  • DOI: 10.1021/nl5046318

A Critical Review of Li∕Air Batteries
journal, January 2012

  • Christensen, Jake; Albertus, Paul; Sanchez-Carrera, Roel S.
  • Journal of The Electrochemical Society, Vol. 159, Issue 2, p. R1-R30
  • DOI: 10.1149/2.086202jes

Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode
journal, January 2015

  • Bieker, Georg; Winter, Martin; Bieker, Peter
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 14
  • DOI: 10.1039/C4CP05865H

Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
journal, June 2015

  • Li, Weiyang; Yao, Hongbin; Yan, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8436

A Lithium-Sulfur Battery with a High Areal Energy Density
journal, June 2014

  • Kim, Joo-Seong; Hwang, Tae Hoon; Kim, Byung Gon
  • Advanced Functional Materials, Vol. 24, Issue 34
  • DOI: 10.1002/adfm.201400935

Rechargeable Lithium–Sulfur Batteries
journal, July 2014

  • Manthiram, Arumugam; Fu, Yongzhu; Chung, Sheng-Heng
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500062v

The critical role of lithium nitrate in the gas evolution of lithium–sulfur batteries
journal, January 2016

  • Jozwiuk, Anna; Berkes, Balázs B.; Weiß, Thomas
  • Energy & Environmental Science, Vol. 9, Issue 8
  • DOI: 10.1039/C6EE00789A

Cellulose-Based Porous Membrane for Suppressing Li Dendrite Formation in Lithium–Sulfur Battery
journal, August 2016


Surface Condition Changes in Lithium Metal Deposited in Nonaqueous Electrolyte Containing HF by Dissolution-Deposition Cycles
journal, January 1999

  • Shiraishi, Soshi
  • Journal of The Electrochemical Society, Vol. 146, Issue 5
  • DOI: 10.1149/1.1391818

The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection
journal, January 2017


Long Cycle-Life Secondary Lithium Cells Utilizing Tetrahydrofuran
journal, January 1984

  • Abraham, K. M.
  • Journal of The Electrochemical Society, Vol. 131, Issue 9
  • DOI: 10.1149/1.2116049

Protection of lithium metal surfaces using tetraethoxysilane
journal, January 2011

  • Umeda, Grant A.; Menke, Erik; Richard, Monique
  • J. Mater. Chem., Vol. 21, Issue 5
  • DOI: 10.1039/C0JM02305A

Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Structural modulation of lithium metal-electrolyte interface with three-dimensional metallic interlayer for high-performance lithium metal batteries
journal, August 2016

  • Lee, Hongkyung; Song, Jongchan; Kim, Yun-Jung
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep30830

Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition
journal, May 2015


A lithium anode protection guided highly-stable lithium–sulfur battery
journal, January 2014

  • Ma, Guoqiang; Wen, Zhaoyin; Wu, Meifen
  • Chem. Commun., Vol. 50, Issue 91
  • DOI: 10.1039/C4CC05535G

Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries
journal, February 2016

  • Cheng, Xin-Bing; Hou, Ting-Zheng; Zhang, Rui
  • Advanced Materials, Vol. 28, Issue 15
  • DOI: 10.1002/adma.201506124

A Review of Solid Electrolyte Interphases on Lithium Metal Anode
journal, November 2015


Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

The critical role of lithium nitrate in the gas evolution of lithium–sulfur batteries
text, January 2016


Stable Lithium Electrodeposition in Liquid and Nanoporous Solid Electrolytes
text, January 2014


Works referencing / citing this record:

Progress on the Critical Parameters for Lithium-Sulfur Batteries to be Practically Viable
journal, May 2018

  • Chung, Sheng-Heng; Chang, Chi-Hao; Manthiram, Arumugam
  • Advanced Functional Materials, Vol. 28, Issue 28
  • DOI: 10.1002/adfm.201801188

Li 2 S- or S-Based Lithium-Ion Batteries
journal, July 2018


Current Status and Future Prospects of Metal–Sulfur Batteries
journal, May 2019


Advances in Interfaces between Li Metal Anode and Electrolyte
journal, December 2017

  • Zhang, Xue-Qiang; Cheng, Xin-Bing; Zhang, Qiang
  • Advanced Materials Interfaces, Vol. 5, Issue 2
  • DOI: 10.1002/admi.201701097

A Review of Composite Lithium Metal Anode for Practical Applications
journal, November 2019

  • Shi, Peng; Zhang, Xue‐Qiang; Shen, Xin
  • Advanced Materials Technologies, Vol. 5, Issue 1
  • DOI: 10.1002/admt.201900806

A Material Perspective of Rechargeable Metallic Lithium Anodes
journal, February 2018


Advances in Artificial Layers for Stable Lithium Metal Anodes
journal, April 2020

  • Qi, Liya; Wu, Zhengwei; Zhao, Binglu
  • Chemistry – A European Journal, Vol. 26, Issue 19
  • DOI: 10.1002/chem.201904631

Nanocellulose Modified Polyethylene Separators for Lithium Metal Batteries
journal, April 2018


Controlling Nucleation in Lithium Metal Anodes
journal, July 2018


A bidirectional growth mechanism for a stable lithium anode by a platinum nanolayer sputtered on a polypropylene separator
journal, January 2018

  • Wen, Kaihua; Liu, Lili; Chen, Shimou
  • RSC Advances, Vol. 8, Issue 23
  • DOI: 10.1039/c8ra02140f

A functional SrF 2 coated separator enabling a robust and dendrite-free solid electrolyte interphase on a lithium metal anode
journal, January 2019

  • Li, Xing; Liu, Yang; Pan, Yong
  • Journal of Materials Chemistry A, Vol. 7, Issue 37
  • DOI: 10.1039/c9ta06908a

Separator-free and concentrated LiNO 3 electrolyte cells enable uniform lithium electrodeposition
journal, January 2020

  • Rodriguez, Rodrigo; Edison, Ruth A.; Stephens, Ryan M.
  • Journal of Materials Chemistry A, Vol. 8, Issue 7
  • DOI: 10.1039/c9ta10929c

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.