DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes

Abstract

Here, an artificial solid electrolyte interphase (SEI) is demonstrated for the efficient and safe operation of a lithium metal anode. Composed of lithium-ion-conducting inorganic nanoparticles within a flexible polymer binder matrix, the rationally designed artificial SEI not only mechanically suppresses lithium dendrite formation but also promotes homogeneous lithium-ion flux, significantly enhancing the efficiency and cycle life of the lithium metal anode.

Authors:
 [1];  [1];  [2];  [3];  [1];  [1];  [4]
  1. Stanford Univ., CA (United States). Dept. of Materials Science and Engineering
  2. Stanford Univ., CA (United States). Dept. of Mechanical Engineering
  3. Department of Materials Science and Engineering, Stanford University, Stanford CA 94305 USA
  4. Stanford Univ., CA (United States). Dept. of Materials Science and Engineering; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); USDOE
OSTI Identifier:
1352611
Alternate Identifier(s):
OSTI ID: 1401036
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Volume: 29; Journal Issue: 10; Journal ID: ISSN 0935-9648
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; artificial solid electrolyte interphase; electrochemistry; lithium metal anodes; nanotechnology; porous lithium

Citation Formats

Liu, Yayuan, Lin, Dingchang, Yuen, Pak Yan, Liu, Kai, Xie, Jin, Dauskardt, Reinhold H., and Cui, Yi. An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes. United States: N. p., 2016. Web. doi:10.1002/adma.201605531.
Liu, Yayuan, Lin, Dingchang, Yuen, Pak Yan, Liu, Kai, Xie, Jin, Dauskardt, Reinhold H., & Cui, Yi. An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes. United States. https://doi.org/10.1002/adma.201605531
Liu, Yayuan, Lin, Dingchang, Yuen, Pak Yan, Liu, Kai, Xie, Jin, Dauskardt, Reinhold H., and Cui, Yi. Thu . "An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes". United States. https://doi.org/10.1002/adma.201605531. https://www.osti.gov/servlets/purl/1352611.
@article{osti_1352611,
title = {An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes},
author = {Liu, Yayuan and Lin, Dingchang and Yuen, Pak Yan and Liu, Kai and Xie, Jin and Dauskardt, Reinhold H. and Cui, Yi},
abstractNote = {Here, an artificial solid electrolyte interphase (SEI) is demonstrated for the efficient and safe operation of a lithium metal anode. Composed of lithium-ion-conducting inorganic nanoparticles within a flexible polymer binder matrix, the rationally designed artificial SEI not only mechanically suppresses lithium dendrite formation but also promotes homogeneous lithium-ion flux, significantly enhancing the efficiency and cycle life of the lithium metal anode.},
doi = {10.1002/adma.201605531},
journal = {Advanced Materials},
number = 10,
volume = 29,
place = {United States},
year = {Thu Dec 29 00:00:00 EST 2016},
month = {Thu Dec 29 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 739 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a) Schematic illustration of the fabrication of the Cu3N+SBR composite artificial SEI. (b) Schematic illustration of the Li plating/stripping behavior of bare Li (upper figure), where the cracking of SEI results in the formation of Li-ion flux “hot spots” and Li dendrites; and the artificial SEI protected Limore » (lower figure), where the good mechanical properties can suppress Li dendrite formation and the high Li-ion conductivity can afford more uniform distribution of Li-ion flux.« less

Save / Share:

Works referenced in this record:

Effect of the Anion Activity on the Stability of Li Metal Anodes in Lithium-Sulfur Batteries
journal, March 2016

  • Cao, Ruiguo; Chen, Junzheng; Han, Kee Sung
  • Advanced Functional Materials, Vol. 26, Issue 18
  • DOI: 10.1002/adfm.201505074

Mechanical properties of biocompatible protein polymer thin films
journal, January 2000

  • Buchko, Christopher J.; Slattery, Margaret J.; Kozloff, Kenneth M.
  • Journal of Materials Research, Vol. 15, Issue 1
  • DOI: 10.1557/JMR.2000.0038

The electrochemical behaviour of 1,3-dioxolane—LiClO4 solutions—I. Uncontaminated solutions
journal, March 1990


Lithium surface protection by polyacetylene in situ polymerization
journal, May 2006


Core-Shell Ge@Graphene@TiO 2 Nanofibers as a High-Capacity and Cycle-Stable Anode for Lithium and Sodium Ion Battery
journal, December 2015

  • Wang, Xiaoyan; Fan, Ling; Gong, Decai
  • Advanced Functional Materials, Vol. 26, Issue 7
  • DOI: 10.1002/adfm.201504589

Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries
journal, January 2012

  • Stone, G. M.; Mullin, S. A.; Teran, A. A.
  • Journal of The Electrochemical Society, Vol. 159, Issue 3
  • DOI: 10.1149/2.030203jes

Ionic conductivity in Li 3 N single crystals
journal, June 1977

  • Alpen, U. v.; Rabenau, A.; Talat, G. H.
  • Applied Physics Letters, Vol. 30, Issue 12
  • DOI: 10.1063/1.89283

Ultrathin Two-Dimensional Atomic Crystals as Stable Interfacial Layer for Improvement of Lithium Metal Anode
journal, September 2014

  • Yan, Kai; Lee, Hyun-Wook; Gao, Teng
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl503125u

Diagnosis of Electrochemical Impedance Spectroscopy in Lithium-Ion Batteries
book, February 2012

  • Zhuang, Quan-Chao; Qiu, Xiang-Yun; Xu, Shou-Dong
  • Lithium Ion Batteries - New Developments
  • DOI: 10.5772/26749

Mechanical characterization of nano-reinforced silica based sol–gel hybrid coatings on AISI 316L stainless steel using nanoindentation techniques
journal, July 2009


Anode-Free Rechargeable Lithium Metal Batteries
journal, August 2016

  • Qian, Jiangfeng; Adams, Brian D.; Zheng, Jianming
  • Advanced Functional Materials, Vol. 26, Issue 39
  • DOI: 10.1002/adfm.201602353

Protection of lithium metal surfaces using tetraethoxysilane
journal, January 2011

  • Umeda, Grant A.; Menke, Erik; Richard, Monique
  • J. Mater. Chem., Vol. 21, Issue 5
  • DOI: 10.1039/C0JM02305A

Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode
journal, March 2016

  • Liu, Yayuan; Lin, Dingchang; Liang, Zheng
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10992

An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes
journal, December 2015


Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating
journal, February 2016

  • Liang, Zheng; Lin, Dingchang; Zhao, Jie
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 11
  • DOI: 10.1073/pnas.1518188113

Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition
journal, May 2015


Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries
journal, October 2011


A lithium anode protection guided highly-stable lithium–sulfur battery
journal, January 2014

  • Ma, Guoqiang; Wen, Zhaoyin; Wu, Meifen
  • Chem. Commun., Vol. 50, Issue 91
  • DOI: 10.1039/C4CC05535G

Li–N based hydrogen storage materials
journal, April 2004


Metallic anodes for next generation secondary batteries
journal, January 2013

  • Kim, Hansu; Jeong, Goojin; Kim, Young-Ugk
  • Chemical Society Reviews, Vol. 42, Issue 23
  • DOI: 10.1039/c3cs60177c

A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries
journal, June 2015


Ultrasmall Cu 3 N Nanoparticles: Surfactant-Free Solution-Phase Synthesis, Nitridation Mechanism, and Application for Lithium Storage
journal, December 2015


Lithium Anodes: Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth (Adv. Mater. 11/2016)
journal, March 2016

  • Zhang, Rui; Cheng, Xin-Bing; Zhao, Chen-Zi
  • Advanced Materials, Vol. 28, Issue 11
  • DOI: 10.1002/adma.201670071

Electrochemistry of Cu[sub 3]N with Lithium
journal, January 2003

  • Pereira, N.; Dupont, L.; Tarascon, J. M.
  • Journal of The Electrochemical Society, Vol. 150, Issue 9
  • DOI: 10.1149/1.1599845

The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces
journal, January 2005

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 152, Issue 2
  • DOI: 10.1149/1.1850854

Interface Stability in Solid-State Batteries
journal, December 2015


Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Sustainable Redox Mediation for Lithium-Oxygen Batteries by a Composite Protective Layer on the Lithium-Metal Anode
journal, December 2015

  • Lee, Dong Jin; Lee, Hongkyung; Kim, Yun-Jung
  • Advanced Materials, Vol. 28, Issue 5
  • DOI: 10.1002/adma.201503169

Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
journal, March 2016

  • Lin, Dingchang; Liu, Yayuan; Liang, Zheng
  • Nature Nanotechnology, Vol. 11, Issue 7
  • DOI: 10.1038/nnano.2016.32

Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

A Review of Solid Electrolyte Interphases on Lithium Metal Anode
journal, November 2015


Covalently Connected Carbon Nanostructures for Current Collectors in Both the Cathode and Anode of Li-S Batteries
journal, September 2016


Works referencing / citing this record:

Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes
journal, August 2018


Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition
journal, January 2020


An ultrathin ionomer interphase for high efficiency lithium anode in carbonate based electrolyte
journal, December 2019


Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy
journal, January 2020


Fluorinated reduced graphene oxide as a protective layer on the metallic lithium for application in the high energy batteries
journal, April 2018


Graphene-Modified 3D Copper Foam Current Collector for Dendrite-Free Lithium Deposition
journal, November 2019


Building Better Batteries in the Solid State: A Review
journal, November 2019

  • Mauger, Alain; Julien, Christian M.; Paolella, Andrea
  • Materials, Vol. 12, Issue 23, p. 3892
  • DOI: 10.3390/ma12233892

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.