DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stabilization of Li Metal Anode in DMSO‐Based Electrolytes via Optimization of Salt–Solvent Coordination for Li–O 2 Batteries

Abstract

The conventional electrolyte of 1 m lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in dimethyl sulfoxide (DMSO) is unstable against the Li metal anode and therefore cannot be used directly in practical Li–O 2 batteries. Here, we demonstrate that a highly concentrated electrolyte based on LiTFSI in DMSO (with a molar ratio of 1:3) can greatly improve the stability of the Li metal anode against DMSO and significantly improve the cycling stability of Li–O 2 batteries. This highly concentrated electrolyte contains no free DMSO solvent molecules, but only complexes of (TFSI ) a Li + (DMSO) b (where a + b = 4), and thus enhances their stability with Li metal anodes. In addition, such salt–solvent complexes have higher Gibbs activation energy barriers than the free DMSO solvent molecules, indicating improved stability of the electrolyte against the attack of superoxide radical anions. Therefore, the stability of this highly concentrated electrolyte at both Li metal anodes and carbon‐based air electrodes has been greatly enhanced, resulting in improved cycling performance of Li–O 2 batteries. The fundamental stability of the electrolyte in the absence of free‐solvent against the chemical and electrochemical reactions can also be used to enhance the stability of other electrochemical systems.

Authors:
 [1];  [1];  [2];  [3];  [2];  [4];  [4];  [5];  [2];  [1]
  1. Energy and Environment Directorate Pacific Northwest National Laboratory Richland WA 99354 USA
  2. Environmental and Molecular Sciences Laboratory Pacific Northwest National Laboratory Richland WA 99354 USA
  3. Energy and Environment Directorate Pacific Northwest National Laboratory Richland WA 99354 USA, Department of Energy Engineering School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology Ulsan 689‐798 South Korea
  4. Physical and Computational Sciences Directorate Pacific Northwest National Laboratory Richland WA 99354 USA
  5. Department of Energy Engineering School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology Ulsan 689‐798 South Korea
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1400619
Grant/Contract Number:  
DEAC02‐05CH11231; DEAC02‐98CH10886; DE‐AC05‐76RLO1830
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Name: Advanced Energy Materials Journal Volume: 7 Journal Issue: 14; Journal ID: ISSN 1614-6832
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Liu, Bin, Xu, Wu, Yan, Pengfei, Kim, Sun Tai, Engelhard, Mark H., Sun, Xiuliang, Mei, Donghai, Cho, Jaephil, Wang, Chong‐Min, and Zhang, Ji‐Guang. Stabilization of Li Metal Anode in DMSO‐Based Electrolytes via Optimization of Salt–Solvent Coordination for Li–O 2 Batteries. Germany: N. p., 2017. Web. doi:10.1002/aenm.201602605.
Liu, Bin, Xu, Wu, Yan, Pengfei, Kim, Sun Tai, Engelhard, Mark H., Sun, Xiuliang, Mei, Donghai, Cho, Jaephil, Wang, Chong‐Min, & Zhang, Ji‐Guang. Stabilization of Li Metal Anode in DMSO‐Based Electrolytes via Optimization of Salt–Solvent Coordination for Li–O 2 Batteries. Germany. https://doi.org/10.1002/aenm.201602605
Liu, Bin, Xu, Wu, Yan, Pengfei, Kim, Sun Tai, Engelhard, Mark H., Sun, Xiuliang, Mei, Donghai, Cho, Jaephil, Wang, Chong‐Min, and Zhang, Ji‐Guang. Wed . "Stabilization of Li Metal Anode in DMSO‐Based Electrolytes via Optimization of Salt–Solvent Coordination for Li–O 2 Batteries". Germany. https://doi.org/10.1002/aenm.201602605.
@article{osti_1400619,
title = {Stabilization of Li Metal Anode in DMSO‐Based Electrolytes via Optimization of Salt–Solvent Coordination for Li–O 2 Batteries},
author = {Liu, Bin and Xu, Wu and Yan, Pengfei and Kim, Sun Tai and Engelhard, Mark H. and Sun, Xiuliang and Mei, Donghai and Cho, Jaephil and Wang, Chong‐Min and Zhang, Ji‐Guang},
abstractNote = {The conventional electrolyte of 1 m lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in dimethyl sulfoxide (DMSO) is unstable against the Li metal anode and therefore cannot be used directly in practical Li–O 2 batteries. Here, we demonstrate that a highly concentrated electrolyte based on LiTFSI in DMSO (with a molar ratio of 1:3) can greatly improve the stability of the Li metal anode against DMSO and significantly improve the cycling stability of Li–O 2 batteries. This highly concentrated electrolyte contains no free DMSO solvent molecules, but only complexes of (TFSI − ) a Li + (DMSO) b (where a + b = 4), and thus enhances their stability with Li metal anodes. In addition, such salt–solvent complexes have higher Gibbs activation energy barriers than the free DMSO solvent molecules, indicating improved stability of the electrolyte against the attack of superoxide radical anions. Therefore, the stability of this highly concentrated electrolyte at both Li metal anodes and carbon‐based air electrodes has been greatly enhanced, resulting in improved cycling performance of Li–O 2 batteries. The fundamental stability of the electrolyte in the absence of free‐solvent against the chemical and electrochemical reactions can also be used to enhance the stability of other electrochemical systems.},
doi = {10.1002/aenm.201602605},
journal = {Advanced Energy Materials},
number = 14,
volume = 7,
place = {Germany},
year = {Wed Mar 08 00:00:00 EST 2017},
month = {Wed Mar 08 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/aenm.201602605

Citation Metrics:
Cited by: 89 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Effects of Electrolyte Salts on the Performance of Li–O 2 Batteries
journal, February 2013

  • Nasybulin, Eduard; Xu, Wu; Engelhard, Mark H.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 6
  • DOI: 10.1021/jp311114u

A Reversible and Higher-Rate Li-O2 Battery
journal, July 2012


General Observation of Lithium Intercalation into Graphite in Ethylene-Carbonate-Free Superconcentrated Electrolytes
journal, March 2014

  • Yamada, Yuki; Usui, Kenji; Chiang, Ching Hua
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 14, p. 10892-10899
  • DOI: 10.1021/am5001163

Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
journal, January 1988


Enhanced Cycling Stability of Rechargeable Li-O 2 Batteries Using High-Concentration Electrolytes
journal, December 2015


Recent Advances in Non-Aqueous Electrolyte for Rechargeable Li-O 2 Batteries
journal, June 2016

  • Li, Yang; Wang, Xiaogang; Dong, Shanmu
  • Advanced Energy Materials, Vol. 6, Issue 18
  • DOI: 10.1002/aenm.201600751

A stable cathode for the aprotic Li–O2 battery
journal, September 2013

  • Ottakam Thotiyl, Muhammed M.; Freunberger, Stefan A.; Peng, Zhangquan
  • Nature Materials, Vol. 12, Issue 11
  • DOI: 10.1038/nmat3737

The Carbon Electrode in Nonaqueous Li–O2 Cells
journal, December 2012

  • Ottakam Thotiyl, Muhammed M.; Freunberger, Stefan A.; Peng, Zhangquan
  • Journal of the American Chemical Society, Vol. 135, Issue 1, p. 494-500
  • DOI: 10.1021/ja310258x

Primary and secondary oxygen-induced C1s binding energy shifts in x-ray photoelectron spectroscopy of polymers
journal, August 1992

  • Briggs, David.; Beamson, Graham.
  • Analytical Chemistry, Vol. 64, Issue 15
  • DOI: 10.1021/ac00039a018

Chemical aspect of oxygen dissolved in a dimethyl sulfoxide-based electrolyte on lithium metal
journal, March 2014


Novel approach for a high-energy-density Li–air battery: tri-dimensional growth of Li2O2 crystals tailored by electrolyte Li+ ion concentrations
journal, January 2014

  • Liu, Yang; Suo, Liumin; Lin, Huan
  • Journal of Materials Chemistry A, Vol. 2, Issue 24
  • DOI: 10.1039/c4ta00834k

Increased Cycling Efficiency of Lithium Anodes in Dimethyl Sulfoxide Electrolytes For Use in Li-O2 Batteries
journal, January 2014

  • Roberts, M.; Younesi, R.; Richardson, W.
  • ECS Electrochemistry Letters, Vol. 3, Issue 6
  • DOI: 10.1149/2.007406eel

Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery
journal, April 2010

  • Laoire, Cormac O.; Mukerjee, Sanjeev; Abraham, K. M.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 19
  • DOI: 10.1021/jp102019y

The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries
journal, November 2014

  • Johnson, Lee; Li, Chunmei; Liu, Zheng
  • Nature Chemistry, Vol. 6, Issue 12
  • DOI: 10.1038/nchem.2101

An improved high-performance lithium–air battery
journal, June 2012

  • Jung, Hun-Gi; Hassoun, Jusef; Park, Jin-Bum
  • Nature Chemistry, Vol. 4, Issue 7
  • DOI: 10.1038/nchem.1376

Reactions in the Rechargeable Lithium–O 2 Battery with Alkyl Carbonate Electrolytes
journal, May 2011

  • Freunberger, Stefan A.; Chen, Yuhui; Peng, Zhangquan
  • Journal of the American Chemical Society, Vol. 133, Issue 20
  • DOI: 10.1021/ja2021747

Lithium salts for advanced lithium batteries: Li–metal, Li–O 2 , and Li–S
journal, January 2015

  • Younesi, Reza; Veith, Gabriel M.; Johansson, Patrik
  • Energy & Environmental Science, Vol. 8, Issue 7
  • DOI: 10.1039/C5EE01215E

Thermal Stability of Li 2 O 2 and Li 2 O for Li-Air Batteries: In Situ XRD and XPS Studies
journal, January 2013

  • Yao, Koffi P. C.; Kwabi, David G.; Quinlan, Ronald A.
  • Journal of The Electrochemical Society, Vol. 160, Issue 6
  • DOI: 10.1149/2.069306jes

Investigation on the charging process of Li2O2-based air electrodes in Li–O2 batteries with organic carbonate electrolytes
journal, April 2011


Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li–O 2 Batteries
journal, March 2012

  • McCloskey, B. D.; Speidel, A.; Scheffler, R.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 8
  • DOI: 10.1021/jz300243r

Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries
journal, March 2014

  • Yamada, Yuki; Furukawa, Keizo; Sodeyama, Keitaro
  • Journal of the American Chemical Society, Vol. 136, Issue 13, p. 5039-5046
  • DOI: 10.1021/ja412807w

Binding of Ether and Carbonyl Oxygens to Lithium Ion
journal, January 1995

  • Blint, Richard J.
  • Journal of The Electrochemical Society, Vol. 142, Issue 3
  • DOI: 10.1149/1.2048519

Nonaqueous Li–Air Batteries: A Status Report
journal, October 2014

  • Luntz, Alan C.; McCloskey, Bryan D.
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500054y

Formation of Interfacial Layer and Long-Term Cyclability of Li–O 2 Batteries
journal, August 2014

  • Nasybulin, Eduard N.; Xu, Wu; Mehdi, B. Layla
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 16
  • DOI: 10.1021/am503390q

Importance of Reaction Kinetics and Oxygen Crossover in aprotic Li-O 2 Batteries Based on a Dimethyl Sulfoxide Electrolyte
journal, August 2015


Stability of polymer binders in Li–O 2 batteries
journal, December 2013


An Advanced Lithium–Air Battery Exploiting an Ionic Liquid-Based Electrolyte
journal, October 2014

  • Elia, G. A.; Hassoun, J.; Kwak, W. -J.
  • Nano Letters, Vol. 14, Issue 11
  • DOI: 10.1021/nl5031985

Instability of Ionic Liquid-Based Electrolytes in Li–O 2 Batteries
journal, July 2015

  • Das, Supti; Højberg, Jonathan; Knudsen, Kristian Bastholm
  • The Journal of Physical Chemistry C, Vol. 119, Issue 32
  • DOI: 10.1021/acs.jpcc.5b04950

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Predicting Solvent Stability in Aprotic Electrolyte Li–Air Batteries: Nucleophilic Substitution by the Superoxide Anion Radical (O 2 •– )
journal, November 2011

  • Bryantsev, Vyacheslav S.; Giordani, Vincent; Walker, Wesley
  • The Journal of Physical Chemistry A, Vol. 115, Issue 44
  • DOI: 10.1021/jp2073914

Insight into lithium–metal anodes in lithium–sulfur batteries with a fluorinated ether electrolyte
journal, January 2015

  • Zu, Chenxi; Azimi, Nasim; Zhang, Zhengcheng
  • Journal of Materials Chemistry A, Vol. 3, Issue 28
  • DOI: 10.1039/C5TA03195H

Li+ solvation in ethylene carbonate–propylene carbonate concentrated solutions: A comprehensive model
journal, October 1997

  • Cazzanelli, E.; Croce, Fausto; Appetecchi, Giovanni Battista
  • The Journal of Chemical Physics, Vol. 107, Issue 15
  • DOI: 10.1063/1.474334

Solvents’ Critical Role in Nonaqueous Lithium–Oxygen Battery Electrochemistry
journal, May 2011

  • McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 10, p. 1161-1166
  • DOI: 10.1021/jz200352v

Combining Accurate O 2 and Li 2 O 2 Assays to Separate Discharge and Charge Stability Limitations in Nonaqueous Li–O 2 Batteries
journal, August 2013

  • McCloskey, Bryan D.; Valery, Alexia; Luntz, Alan C.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 17
  • DOI: 10.1021/jz401659f

Novel DMSO-based electrolyte for high performance rechargeable Li–O2 batteries
journal, January 2012

  • Xu, Dan; Wang, Zhong-li; Xu, Ji-jing
  • Chemical Communications, Vol. 48, Issue 55
  • DOI: 10.1039/c2cc32844e

XPS study of lithium surface after contact with lithium-salt doped polymer electrolytes
journal, March 2001


The stability of organic solvents and carbon electrode in nonaqueous Li-O2 batteries
journal, October 2012


High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362

Studies of Li-Air Cells Utilizing Dimethyl Sulfoxide-Based Electrolyte
journal, December 2012

  • Trahan, Matthew J.; Mukerjee, Sanjeev; Plichta, Edward J.
  • Journal of The Electrochemical Society, Vol. 160, Issue 2
  • DOI: 10.1149/2.048302jes

An optimized LiNO3/DMSO electrolyte for high-performance rechargeable Li–O2 batteries
journal, January 2014

  • Sun, Bing; Huang, Xiaodan; Chen, Shuangqiang
  • RSC Advances, Vol. 4, Issue 22
  • DOI: 10.1039/c3ra47372d

In Situ Observation of Electrolyte-Concentration-Dependent Solid Electrolyte Interphase on Graphite in Dimethyl Sulfoxide
journal, April 2015

  • Liu, Xing-Rui; Wang, Lin; Wan, Li-Jun
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 18
  • DOI: 10.1021/acsami.5b01024