DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis of NaTi 2 ( PO 4 ) 3 by the Inorganic–Organic Steric Entrapment Method and Its Thermal Expansion Behavior

Abstract

Crystalline pure NaTi 2 ( PO 4 ) 3 ( NTP ) powder was synthesized at 700°C using a simple and low energy, hybrid inorganic–organic, steric entrapment method. Sodium nitrite (Na NO 2 ) and ammonium phosphate dibasic (( NH 4 ) 2 HPO 4 ) dissolved in water, whereas titanium ( IV ) isopropoxide (Ti[ OCH ( CH 3 ) 2 ] 4 ) hydrolyzed in water. Ethylene glycol ( HOCH 2 CH 2 OH ) was used as a polymeric entrapper and hydrolysis of the Ti source was hindered by its dissolution in isopropyl alcohol. The resulting NTP powder was characterized by thermogravimetric analysis/differential thermal analysis, X‐ray diffractometry, scanning electron microscopy, specific surface area by Brunauer–Emmett–Teller nitrogen absorption, and particle size analysis. Furthermore, C, H, N were measured by the classical Pregl‐Dumas method. The thermal expansion behavior in all { hkl } pole directions was also determined by in situ high‐temperature X‐ray diffraction using synchrotron radiation and was found to be in agreement with other published studies.

Authors:
 [1];  [1];  [1];
  1. Department of Materials Science and Engineering University of Illinois at Urbana‐Champaign 1304 W. Green St Urbana Illinois
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1400576
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Journal of the American Ceramic Society
Additional Journal Information:
Journal Name: Journal of the American Ceramic Society Journal Volume: 99 Journal Issue: 11; Journal ID: ISSN 0002-7820
Publisher:
Wiley-Blackwell
Country of Publication:
United States
Language:
English

Citation Formats

Ribero, Daniel, Seymour, Kevin C., Kriven, Waltraud M., and White, ed., M. A. Synthesis of NaTi 2 ( PO 4 ) 3 by the Inorganic–Organic Steric Entrapment Method and Its Thermal Expansion Behavior. United States: N. p., 2016. Web. doi:10.1111/jace.14420.
Ribero, Daniel, Seymour, Kevin C., Kriven, Waltraud M., & White, ed., M. A. Synthesis of NaTi 2 ( PO 4 ) 3 by the Inorganic–Organic Steric Entrapment Method and Its Thermal Expansion Behavior. United States. https://doi.org/10.1111/jace.14420
Ribero, Daniel, Seymour, Kevin C., Kriven, Waltraud M., and White, ed., M. A. Tue . "Synthesis of NaTi 2 ( PO 4 ) 3 by the Inorganic–Organic Steric Entrapment Method and Its Thermal Expansion Behavior". United States. https://doi.org/10.1111/jace.14420.
@article{osti_1400576,
title = {Synthesis of NaTi 2 ( PO 4 ) 3 by the Inorganic–Organic Steric Entrapment Method and Its Thermal Expansion Behavior},
author = {Ribero, Daniel and Seymour, Kevin C. and Kriven, Waltraud M. and White, ed., M. A.},
abstractNote = {Crystalline pure NaTi 2 ( PO 4 ) 3 ( NTP ) powder was synthesized at 700°C using a simple and low energy, hybrid inorganic–organic, steric entrapment method. Sodium nitrite (Na NO 2 ) and ammonium phosphate dibasic (( NH 4 ) 2 HPO 4 ) dissolved in water, whereas titanium ( IV ) isopropoxide (Ti[ OCH ( CH 3 ) 2 ] 4 ) hydrolyzed in water. Ethylene glycol ( HOCH 2 CH 2 OH ) was used as a polymeric entrapper and hydrolysis of the Ti source was hindered by its dissolution in isopropyl alcohol. The resulting NTP powder was characterized by thermogravimetric analysis/differential thermal analysis, X‐ray diffractometry, scanning electron microscopy, specific surface area by Brunauer–Emmett–Teller nitrogen absorption, and particle size analysis. Furthermore, C, H, N were measured by the classical Pregl‐Dumas method. The thermal expansion behavior in all { hkl } pole directions was also determined by in situ high‐temperature X‐ray diffraction using synchrotron radiation and was found to be in agreement with other published studies.},
doi = {10.1111/jace.14420},
journal = {Journal of the American Ceramic Society},
number = 11,
volume = 99,
place = {United States},
year = {Tue Aug 02 00:00:00 EDT 2016},
month = {Tue Aug 02 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1111/jace.14420

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Fast Na+-ion transport in skeleton structures
journal, February 1976


Synthesis of a new NASICON-type blue luminescent material
journal, July 2006


Negative thermal expansion: a review
journal, July 2009


Synthesis and Thermal Expansion of β-Eucryptite Powders Produced by the Inorganic-Organic Steric Entrapment Method
journal, July 2014

  • Seymour, Kevin C.; Kriven, Waltraud M.
  • Journal of the American Ceramic Society, Vol. 97, Issue 10
  • DOI: 10.1111/jace.13102

[CTP]: A new structural family of near-zero expansion ceramics
journal, April 1984


Investigation of porous counter electrode for the CO2 sensing properties of NASICON based gas sensor
journal, October 2011


Synthesis and characterization of sodium-titanium phosphates, Na4(TiO)(PO4)2, Na(TiO)PO4, and NaTi2(PO4)3
journal, April 1988


Polymerized Organic-Inorganic Synthesis of Mixed Oxides
journal, March 1999


Thermal Expansion of HfO 2 and ZrO 2 : Thermal Expansion
journal, May 2014

  • Haggerty, Ryan P.; Sarin, Pankaj; Apostolov, Zlatomir D.
  • Journal of the American Ceramic Society, Vol. 97, Issue 7
  • DOI: 10.1111/jace.12975

A wide-ranging review on Nasicon type materials
journal, February 2011

  • Anantharamulu, N.; Koteswara Rao, K.; Rambabu, G.
  • Journal of Materials Science, Vol. 46, Issue 9
  • DOI: 10.1007/s10853-011-5302-5

Origin of the negative thermal expansion in and
journal, December 1996

  • Pryde, Alexandra K. A.; Hammonds, Kenton D.; Dove, Martin T.
  • Journal of Physics: Condensed Matter, Vol. 8, Issue 50
  • DOI: 10.1088/0953-8984/8/50/023

Comparison of the structural behaviour of the low thermal expansion NZP phases MTi2(PO4)3 (M = Li, Na, K)
journal, January 1999

  • Woodcock, D. A.; Lightfoot, P.
  • Journal of Materials Chemistry, Vol. 9, Issue 11
  • DOI: 10.1039/a904193a

The nasicon-type titanium phosphates Ati2(PO4)3 (A=Li, Na) as electrode materials
journal, September 1988


Characterization of active sites on AgHf2(PO4)3 in butan-2-ol conversion
journal, March 2001

  • Brik, Youness; Kacimi, Mohamed; Bozon-Verduraz, François
  • Microporous and Mesoporous Materials, Vol. 43, Issue 1
  • DOI: 10.1016/S1387-1811(00)00353-X

Ion-exchange properties of NASICON-type phosphates with the frameworks [Ti2(PO4)3] and [Ti1.7Al0.3(PO4)3]
journal, January 1994

  • Hirose, Naohiro; Kuwano, Jun
  • Journal of Materials Chemistry, Vol. 4, Issue 1
  • DOI: 10.1039/jm9940400009

Towards High Power High Energy Aqueous Sodium-Ion Batteries: The NaTi 2 (PO 4 ) 3 /Na 0.44 MnO 2 System
journal, October 2012


Chemistry and properties of solids with the [NZP] skeleton
journal, September 1993


Thermal Expansion of the Orthorhombic Phase in the Ln 2 TiO 5 System
journal, August 2015

  • Seymour, Kevin C.; Hughes, Robert W.; Kriven, Waltraud M.
  • Journal of the American Ceramic Society, Vol. 98, Issue 12
  • DOI: 10.1111/jace.13821

Very Low Thermal Expansion Coefficient Materials
journal, August 1989


Negative Thermal Expansion in the Siliceous Zeolites Chabazite and ITQ-4:  A Neutron Powder Diffraction Study
journal, September 1999

  • Woodcock, David A.; Lightfoot, Philip; Villaescusa, Luis A.
  • Chemistry of Materials, Vol. 11, Issue 9
  • DOI: 10.1021/cm991047q

Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8
journal, April 1996


Low thermal expansion materials: a comparison of the structural behaviour of La0.33Ti2(PO4)3, Sr0.5Ti2(PO4)3 and NaTi2(PO4)3
journal, April 1999

  • Lightfoot, Philip; Woodcock, David A.; Jorgensen, James D.
  • International Journal of Inorganic Materials, Vol. 1, Issue 1
  • DOI: 10.1016/S1463-0176(99)00008-3

Thermal Expansion Behavior of NaZr2(PO4)3Type Compounds
journal, January 1986


Synthesis of sodium titanium phosphate at ultra-low temperature
journal, July 2012


Quadrupole lamp furnace for high temperature (up to 2050K) synchrotron powder x-ray diffraction studies in air in reflection geometry
journal, September 2006

  • Sarin, P.; Yoon, W.; Jurkschat, K.
  • Review of Scientific Instruments, Vol. 77, Issue 9
  • DOI: 10.1063/1.2349600

Mechanism of low thermal expansion in the cation-ordered Nasicon structure
journal, January 1998

  • Woodcock, David A.; Lightfoot, Philip; Woodcock, David A.
  • Chemical Communications, Issue 1
  • DOI: 10.1039/a706928f

Thermal expansion behaviour of M′Ti2P3O12 (M′=Li, Na, K, Cs) and M″Ti4P6O24 (M″=Mg, Ca, Sr, Ba) compounds
journal, July 1995

  • Huang, C. -Y.; Agrawal, D. K.; McKinstry, H. A.
  • Journal of Materials Science, Vol. 30, Issue 13
  • DOI: 10.1007/BF00349902

Exceptional Negative Thermal Expansion in AlPO 4 -17
journal, July 1998

  • Attfield, Martin P.; Sleight, Arthur W.
  • Chemistry of Materials, Vol. 10, Issue 7
  • DOI: 10.1021/cm9801587

The Crystal Structure of NaM2IV(PO4)3; MeIV = Ge, Ti, Zr.
journal, January 1968


Synthesis of LiFePO 4 powder by the organic–inorganic steric entrapment method
journal, July 2015

  • Ribero, Daniel; Kriven, Waltraud M.
  • Journal of Materials Research, Vol. 30, Issue 14
  • DOI: 10.1557/jmr.2015.181

Effect of microstructure on the conductivity of a NASICON-type lithium ion conductor
journal, June 2011


Electrochemical Properties of NaTi2(PO4)3 Anode for Rechargeable Aqueous Sodium-Ion Batteries
journal, January 2011

  • Park, Sun Il; Gocheva, Irina; Okada, Shigeto
  • Journal of The Electrochemical Society, Vol. 158, Issue 10
  • DOI: 10.1149/1.3611434

Pulsed Laser Deposition of NASICON Thin Films for the Fabrication of Ion Selective Membranes
journal, January 1997

  • Izquierdo, R.
  • Journal of The Electrochemical Society, Vol. 144, Issue 12
  • DOI: 10.1149/1.1838147

A rapid synthesis of sodium titanium phosphate, NaTi2(PO4)3 by using microwave energy
journal, October 2006


EXPGUI , a graphical user interface for GSAS
journal, April 2001


A study on lithium/air secondary batteries—Stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions
journal, June 2011


Hydrothermal synthesis of MTi2(PO4)3 (M=Li,Na,K)
journal, July 1990


NASICON-type Li1+2xZr2−xCax(PO4)3 with high ionic conductivity at room temperature
journal, January 2011

  • Xie, Hui; Li, Yutao; Goodenough, John B.
  • RSC Advances, Vol. 1, Issue 9
  • DOI: 10.1039/c1ra00383f

Sodium zirconium phosphate (NZP) as a host structure for nuclear waste immobilization: A review
journal, January 1994


Low temperature preparation of NaTi<SUB align=right>2(PO<SUB align=right>4)<SUB align=right>3 by sol-gel method
journal, January 2010

  • Velchuri, Radha; Kumar, B. Vijaya; Devi, V. Rama
  • International Journal of Nanotechnology, Vol. 7, Issue 9/10/11/12
  • DOI: 10.1504/IJNT.2010.034712

Preparation and measurement of standard organic gases using a diffusion method and a NASICON-based CO2 sensor combined with a combustion catalyst
journal, January 2011

  • Kida, Tetsuya; Seo, Min-Hyun; Kishi, Shotaro
  • Analytical Methods, Vol. 3, Issue 8
  • DOI: 10.1039/c1ay05223c

Thermal expansion of NaTi2(PO4)3 studied by rietveld method from X-ray diffraction data
journal, May 1989


CTEAS : a graphical-user-interface-based program to determine thermal expansion from high-temperature X-ray diffraction
journal, March 2013

  • Jones, Z. A.; Sarin, P.; Haggerty, R. P.
  • Journal of Applied Crystallography, Vol. 46, Issue 2
  • DOI: 10.1107/S0021889813002938

Strong negative thermal expansion in siliceous faujasite
journal, January 1998


Strong negative thermal expansion in the siliceous zeolites ITQ-1, ITQ-3 and SSZ-23
journal, January 1999

  • Woodcock, David A.; Lightfoot, Philip; Wright, Paul A.
  • Journal of Materials Chemistry, Vol. 9, Issue 2
  • DOI: 10.1039/a808059c

A nasicon-type phase as intercalation electrode: NaTi2(PO4)3
journal, May 1987


NZP: A new family of low-thermal expansion materials
journal, July 1991

  • Agrawal, D. K.; Huang, C. -Y.; McKinstry, H. A.
  • International Journal of Thermophysics, Vol. 12, Issue 4
  • DOI: 10.1007/BF00534225

Microwave Synthesized NaTi 2 (PO 4 ) 3 as an Aqueous Sodium-Ion Negative Electrode
journal, January 2013

  • Wu, Wei; Mohamed, Alex; Whitacre, J. F.
  • Journal of The Electrochemical Society, Vol. 160, Issue 3
  • DOI: 10.1149/2.054303jes

Negative Thermal Expansion and Phase Transitions in the ZrV2-xPxO7 Series
journal, February 1995

  • Korthuis, V.; Khosrovani, N.; Sleight, A. W.
  • Chemistry of Materials, Vol. 7, Issue 2
  • DOI: 10.1021/cm00050a028