skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Online anomaly detection for multi-source VMware using a distributed streaming framework: ONLINE ANOMALY DETECTION USING A DISTRIBUTED STREAMING FRAMEWORK

Authors:
 [1];  [1];  [1];  [1];  [2];  [3]
  1. Department of Computer Science, The University of Texas at Dallas, Dallas TX 75080 USA
  2. Sandia National Laboratories, Albuquerque NM 87123 USA
  3. Department of Business, Istanbul Medeniyet University, Istanbul Turkey
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1400533
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Software, Practice and Experience
Additional Journal Information:
Journal Name: Software, Practice and Experience Journal Volume: 46 Journal Issue: 11; Journal ID: ISSN 0038-0644
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
United Kingdom
Language:
English

Citation Formats

Solaimani, Mohiuddin, Iftekhar, Mohammed, Khan, Latifur, Thuraisingham, Bhavani, Ingram, Joe, and Seker, Sadi Evren. Online anomaly detection for multi-source VMware using a distributed streaming framework: ONLINE ANOMALY DETECTION USING A DISTRIBUTED STREAMING FRAMEWORK. United Kingdom: N. p., 2016. Web. doi:10.1002/spe.2390.
Solaimani, Mohiuddin, Iftekhar, Mohammed, Khan, Latifur, Thuraisingham, Bhavani, Ingram, Joe, & Seker, Sadi Evren. Online anomaly detection for multi-source VMware using a distributed streaming framework: ONLINE ANOMALY DETECTION USING A DISTRIBUTED STREAMING FRAMEWORK. United Kingdom. doi:10.1002/spe.2390.
Solaimani, Mohiuddin, Iftekhar, Mohammed, Khan, Latifur, Thuraisingham, Bhavani, Ingram, Joe, and Seker, Sadi Evren. Mon . "Online anomaly detection for multi-source VMware using a distributed streaming framework: ONLINE ANOMALY DETECTION USING A DISTRIBUTED STREAMING FRAMEWORK". United Kingdom. doi:10.1002/spe.2390.
@article{osti_1400533,
title = {Online anomaly detection for multi-source VMware using a distributed streaming framework: ONLINE ANOMALY DETECTION USING A DISTRIBUTED STREAMING FRAMEWORK},
author = {Solaimani, Mohiuddin and Iftekhar, Mohammed and Khan, Latifur and Thuraisingham, Bhavani and Ingram, Joe and Seker, Sadi Evren},
abstractNote = {},
doi = {10.1002/spe.2390},
journal = {Software, Practice and Experience},
number = 11,
volume = 46,
place = {United Kingdom},
year = {2016},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1002/spe.2390

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

MapReduce: simplified data processing on large clusters
journal, January 2008

  • Dean, Jeffrey; Ghemawat, Sanjay; Mehta, Brijesh
  • Communications of the ACM, Vol. 51, Issue 1
  • DOI: 10.1145/1327452.1327492

Evolving Stream Classification using Change Detection
conference, January 2014

  • Mustafa, Ahmad; Haque, Ahsanul; Khan, Latifur
  • Proceedings of the 10th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing
  • DOI: 10.4108/icst.collaboratecom.2014.257769

A scalable, non-parametric anomaly detection framework for Hadoop
conference, January 2013

  • Yu, Li; Lan, Zhiling
  • Proceedings of the 2013 ACM Cloud and Autonomic Computing Conference on - CAC '13
  • DOI: 10.1145/2494621.2494643

Bigtable: A Distributed Storage System for Structured Data
journal, June 2008

  • Chang, Fay; Dean, Jeffrey; Ghemawat, Sanjay
  • ACM Transactions on Computer Systems, Vol. 26, Issue 2
  • DOI: 10.1145/1365815.1365816

Data-centric anomalies in sensor network deployments: analysis and detection
conference, October 2012

  • Abuaitah, Giovani Rimon; Wang, Bin
  • 2012 IEEE 9th International Conference on Mobile Ad-Hoc and Sensor Systems (MASS 2012)
  • DOI: 10.1109/MASS.2012.6708514

Benchmarking cloud serving systems with YCSB
conference, January 2010

  • Cooper, Brian F.; Silberstein, Adam; Tam, Erwin
  • Proceedings of the 1st ACM symposium on Cloud computing - SoCC '10
  • DOI: 10.1145/1807128.1807152

B-dids: Mining anomalies in a Big-distributed Intrusion Detection System
conference, October 2014

  • Janeja, Vandana P.; Azari, Ali; Namayanja, Josephine M.
  • 2014 IEEE International Conference on Big Data (Big Data)
  • DOI: 10.1109/BigData.2014.7004484

Real-time anomaly detection over VMware performance data using storm
conference, August 2014

  • Solaimani, Mohiuddin; Khan, Latifur; Thuraisingham, Bhavani
  • 2014 IEEE International Conference on Information Reuse and Integration (IRI), Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014)
  • DOI: 10.1109/IRI.2014.7051925

Incremental Clustering and Dynamic Information Retrieval
journal, January 2004


Spark-based anomaly detection over multi-source VMware performance data in real-time
conference, December 2014

  • Solaimani, Mohiuddin; Iftekhar, Mohammed; Khan, Latifur
  • 2014 IEEE Symposium on Computational Intelligence in Cyber Security (CICS)
  • DOI: 10.1109/CICYBS.2014.7013369

Online anomaly detection for sensor systems: A simple and efficient approach
journal, November 2010


Tackling the Big Data 4 vs for anomaly detection
conference, April 2014

  • Camacho, Jose; Macia-Fernandez, Gabriel; Diaz-Verdejo, Jesus
  • IEEE INFOCOM 2014 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)
  • DOI: 10.1109/INFCOMW.2014.6849282

Contextual Anomaly Detection in Big Sensor Data
conference, June 2014


Anomaly detection in online social networks
journal, October 2014