skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ferroelectric-Domain-Patterning-Controlled Schottky Junction State in Monolayer MoS 2

Abstract

Here, we exploit scanning probe controlled domain patterning in a ferroelectric top-layer to induce nonvolatile modulation of the conduction characteristic of monolayer MoS2 between a transistor and a junction state. In the presence of a domain wall, MoS2 exhibits rectified I-V that is well described by the thermionic emission model. The induced Schottky barrier height ΦeffΒ varies from 0.38 eV to 0.57 eV and is tunabe by a SiO2 global back-gate, while the tuning range of ΦeffΒ the barrier height depends sensitively on the conduction band tail trapping states. Our work points to a new route to achieve programmable functionalities in van der Waals materials and sheds light on the critical performance limiting factors in these hybrid systems.

Authors:
 [1];  [1];  [2];  [1]; ORCiD logo [1]
  1. Univ. of Nebraska-Lincoln, Lincoln, NE (United States)
  2. Arizona State Univ., Tempe, AZ (United States)
Publication Date:
Research Org.:
Univ. of Nebraska-Lincoln, Lincoln, NE (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1400412
Alternate Identifier(s):
OSTI ID: 1372585
Grant/Contract Number:  
SC0016153
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 118; Journal Issue: 23; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; MoS2; P(VDF-TrFE); ferroelectric field effect; Schottky junction; scanning probe microscopy; ferroelectric domain

Citation Formats

Xiao, Zhiyong, Song, Jingfeng, Ferry, David K., Ducharme, Stephen, and Hong, Xia. Ferroelectric-Domain-Patterning-Controlled Schottky Junction State in Monolayer MoS2. United States: N. p., 2017. Web. doi:10.1103/PhysRevLett.118.236801.
Xiao, Zhiyong, Song, Jingfeng, Ferry, David K., Ducharme, Stephen, & Hong, Xia. Ferroelectric-Domain-Patterning-Controlled Schottky Junction State in Monolayer MoS2. United States. doi:10.1103/PhysRevLett.118.236801.
Xiao, Zhiyong, Song, Jingfeng, Ferry, David K., Ducharme, Stephen, and Hong, Xia. Thu . "Ferroelectric-Domain-Patterning-Controlled Schottky Junction State in Monolayer MoS2". United States. doi:10.1103/PhysRevLett.118.236801. https://www.osti.gov/servlets/purl/1400412.
@article{osti_1400412,
title = {Ferroelectric-Domain-Patterning-Controlled Schottky Junction State in Monolayer MoS2},
author = {Xiao, Zhiyong and Song, Jingfeng and Ferry, David K. and Ducharme, Stephen and Hong, Xia},
abstractNote = {Here, we exploit scanning probe controlled domain patterning in a ferroelectric top-layer to induce nonvolatile modulation of the conduction characteristic of monolayer MoS2 between a transistor and a junction state. In the presence of a domain wall, MoS2 exhibits rectified I-V that is well described by the thermionic emission model. The induced Schottky barrier height ΦeffΒ varies from 0.38 eV to 0.57 eV and is tunabe by a SiO2 global back-gate, while the tuning range of ΦeffΒ the barrier height depends sensitively on the conduction band tail trapping states. Our work points to a new route to achieve programmable functionalities in van der Waals materials and sheds light on the critical performance limiting factors in these hybrid systems.},
doi = {10.1103/PhysRevLett.118.236801},
journal = {Physical Review Letters},
number = 23,
volume = 118,
place = {United States},
year = {2017},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Light-emitting diodes by band-structure engineering in van der Waals heterostructures
journal, February 2015

  • Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.
  • Nature Materials, Vol. 14, Issue 3
  • DOI: 10.1038/nmat4205

Polarized Raman spectra and LO-TO splitting of poly(vinylidene fluoride) crystal form I
journal, December 1985

  • Tashiro, Kohji; Itoh, Yuzo; Kobayashi, Masamichi
  • Macromolecules, Vol. 18, Issue 12
  • DOI: 10.1021/ma00154a041

Photodetectors based on graphene, other two-dimensional materials and hybrid systems
journal, October 2014

  • Koppens, F. H. L.; Mueller, T.; Avouris, Ph.
  • Nature Nanotechnology, Vol. 9, Issue 10
  • DOI: 10.1038/nnano.2014.215

Mono- and Bilayer WS 2 Light-Emitting Transistors
journal, March 2014

  • Jo, Sanghyun; Ubrig, Nicolas; Berger, Helmuth
  • Nano Letters, Vol. 14, Issue 4
  • DOI: 10.1021/nl500171v

Spatial Control of Photoluminescence at Room Temperature by Ferroelectric Domains in Monolayer WS 2 /PZT Hybrid Structures
journal, December 2016


Gate-modulated conductance of few-layer WSe 2 field-effect transistors in the subgap regime: Schottky barrier transistor and subgap impurity states
journal, April 2015

  • Wang, Junjie; Rhodes, Daniel; Feng, Simin
  • Applied Physics Letters, Vol. 106, Issue 15
  • DOI: 10.1063/1.4918282

Examining Graphene Field Effect Sensors for Ferroelectric Thin Film Studies
journal, August 2013

  • Rajapitamahuni, A.; Hoffman, J.; Ahn, C. H.
  • Nano Letters, Vol. 13, Issue 9
  • DOI: 10.1021/nl402204t

Effect of thermal annealing on ferroelectric domain structures in poly(vinylidene-fluoride-trifluorethylene) Langmuir-Blodgett thin films
journal, August 2014

  • Xiao, Z.; Hamblin, J.; Poddar, Shashi
  • Journal of Applied Physics, Vol. 116, Issue 6
  • DOI: 10.1063/1.4891396

Anomalous Lattice Vibrations of Single- and Few-Layer MoS 2
journal, March 2010

  • Lee, Changgu; Yan, Hugen; Brus, Louis E.
  • ACS Nano, Vol. 4, Issue 5
  • DOI: 10.1021/nn1003937

Characteristics of a pressure sensitive touch sensor using a piezoelectric PVDF-TrFE/MoS 2 stack
journal, October 2013


Emerging Photoluminescence in Monolayer MoS2
journal, April 2010

  • Splendiani, Andrea; Sun, Liang; Zhang, Yuanbo
  • Nano Letters, Vol. 10, Issue 4, p. 1271-1275
  • DOI: 10.1021/nl903868w

Van der Waals heterostructures
journal, July 2013

  • Geim, A. K.; Grigorieva, I. V.
  • Nature, Vol. 499, Issue 7459, p. 419-425
  • DOI: 10.1038/nature12385

Emerging ferroelectric transistors with nanoscale channel materials: the possibilities, the limitations
journal, February 2016


Black Phosphorus–Monolayer MoS 2 van der Waals Heterojunction p–n Diode
journal, July 2014

  • Deng, Yexin; Luo, Zhe; Conrad, Nathan J.
  • ACS Nano, Vol. 8, Issue 8
  • DOI: 10.1021/nn5027388

Suspended single-layer MoS 2 devices
journal, October 2013

  • Jin, Taiyu; Kang, Jinyeong; Su Kim, Eok
  • Journal of Applied Physics, Vol. 114, Issue 16
  • DOI: 10.1063/1.4827477

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
journal, November 2012

  • Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras
  • Nature Nanotechnology, Vol. 7, Issue 11, p. 699-712
  • DOI: 10.1038/nnano.2012.193

How Good Can Monolayer MoS 2 Transistors Be?
journal, September 2011

  • Yoon, Youngki; Ganapathi, Kartik; Salahuddin, Sayeef
  • Nano Letters, Vol. 11, Issue 9
  • DOI: 10.1021/nl2018178

Charge Scattering and Mobility in Atomically Thin Semiconductors
journal, March 2014


Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide
journal, March 2014

  • Baugher, Britton W. H.; Churchill, Hugh O. H.; Yang, Yafang
  • Nature Nanotechnology, Vol. 9, Issue 4
  • DOI: 10.1038/nnano.2014.25

MoS 2 P-type Transistors and Diodes Enabled by High Work Function MoO x Contacts
journal, February 2014

  • Chuang, Steven; Battaglia, Corsin; Azcatl, Angelica
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl4043505

Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides
journal, January 2014

  • Jariwala, Deep; Sangwan, Vinod K.; Lauhon, Lincoln J.
  • ACS Nano, Vol. 8, Issue 2
  • DOI: 10.1021/nn500064s

Toward Ferroelectric Control of Monolayer MoS 2
journal, April 2015


Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition
journal, January 2014

  • Zhu, Wenjuan; Low, Tony; Lee, Yi-Hsien
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4087

Tuning and Persistent Switching of Graphene Plasmons on a Ferroelectric Substrate
journal, July 2015


Measurement of mobility in dual-gated MoS2 transistors
journal, March 2013


Phonon-limited mobility in n -type single-layer MoS 2 from first principles
journal, March 2012

  • Kaasbjerg, Kristen; Thygesen, Kristian S.; Jacobsen, Karsten W.
  • Physical Review B, Vol. 85, Issue 11
  • DOI: 10.1103/PhysRevB.85.115317

Deposition of High-Quality HfO 2 on Graphene and the Effect of Remote Oxide Phonon Scattering
journal, September 2010


Two-dimensional atomic crystals
journal, July 2005

  • Novoselov, K. S.; Jiang, D.; Schedin, F.
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 30, p. 10451-10453
  • DOI: 10.1073/pnas.0502848102

Mobility engineering and a metal–insulator transition in monolayer MoS2
journal, June 2013

  • Radisavljevic, Branimir; Kis, Andras
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3687

Domain wall roughness and creep in nanoscale crystalline ferroelectric polymers
journal, September 2013

  • Xiao, Z.; Poddar, Shashi; Ducharme, Stephen
  • Applied Physics Letters, Vol. 103, Issue 11
  • DOI: 10.1063/1.4820784

Planar Edge Schottky Barrier-Tunneling Transistors Using Epitaxial Graphene/SiC Junctions
journal, August 2014

  • Kunc, Jan; Hu, Yike; Palmer, James
  • Nano Letters, Vol. 14, Issue 9
  • DOI: 10.1021/nl502069d

Single-Layer MoS2 Phototransistors
journal, December 2011

  • Yin, Zongyou; Li, Hai; Li, Hong
  • ACS Nano, Vol. 6, Issue 1, p. 74-80
  • DOI: 10.1021/nn2024557

Effective electron mobility in Si inversion layers in metal–oxide–semiconductor systems with a high-κ insulator: The role of remote phonon scattering
journal, November 2001

  • Fischetti, Massimo V.; Neumayer, Deborah A.; Cartier, Eduard A.
  • Journal of Applied Physics, Vol. 90, Issue 9
  • DOI: 10.1063/1.1405826

Ferroelectric tunnel junctions with graphene electrodes
journal, November 2014

  • Lu, H.; Lipatov, A.; Ryu, S.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6518

Symmetry-dependent phonon renormalization in monolayer MoS 2 transistor
journal, April 2012


Determination of the optical dispersion in ferroelectric vinylidene fluoride (70%)/trifluoroethylene (30%) copolymer Langmuir–Blodgett films
journal, April 2004

  • Bai, Mengjun; Sorokin, A. V.; Thompson, Daniel W.
  • Journal of Applied Physics, Vol. 95, Issue 7
  • DOI: 10.1063/1.1649464

Photovoltaic and Photothermoelectric Effect in a Double-Gated WSe 2 Device
journal, September 2014

  • Groenendijk, Dirk J.; Buscema, Michele; Steele, Gary A.
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl502741k

Low voltage and high ON/OFF ratio field-effect transistors based on CVD MoS 2 and ultra high-k gate dielectric PZT
journal, January 2015

  • Zhou, Changjian; Wang, Xinsheng; Raju, Salahuddin
  • Nanoscale, Vol. 7, Issue 19
  • DOI: 10.1039/C5NR01072A

Single-layer MoS2 transistors
journal, January 2011

  • Radisavljevic, B.; Radenovic, A.; Brivio, J.
  • Nature Nanotechnology, Vol. 6, Issue 3, p. 147-150
  • DOI: 10.1038/nnano.2010.279

Optoelectrical Molybdenum Disulfide (MoS 2 )—Ferroelectric Memories
journal, July 2015


Atomically thin p–n junctions with van der Waals heterointerfaces
journal, August 2014

  • Lee, Chul-Ho; Lee, Gwan-Hyoung; van der Zande, Arend M.
  • Nature Nanotechnology, Vol. 9, Issue 9
  • DOI: 10.1038/nnano.2014.150

MoS 2 Nanosheets for Top-Gate Nonvolatile Memory Transistor Channel
journal, July 2012


Ultrasensitive and Broadband MoS 2 Photodetector Driven by Ferroelectrics
journal, September 2015