DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interface Engineering of Domain Structures in BiFeO3 Thin Films

Abstract

A wealth of fascinating phenomena have been discovered at the BiFeO3 domain walls, examples such as domain wall conductivity, photovoltaic effects, and magnetoelectric coupling. Thus, the ability to precisely control the domain structures and accurately study their switching behaviors is critical to realize the next generation of novel devices based on domain wall functionalities. In this work, the introduction of a dielectric layer leads to the tunability of the depolarization field both in the multilayers and superlattices, which provides a novel approach to control the domain patterns of BiFeO3 films. Moreover, we are able to study the switching behavior of the first time obtained periodic 109° stripe domains with a thick bottom electrode. Besides, the precise controlling of pure 71° and 109° periodic stripe domain walls enable us to make a clear demonstration that the exchange bias in the ferromagnet/BiFeO3 system originates from 109° domain walls. Our findings provide future directions to study the room temperature electric field control of exchange bias and open a new pathway to explore the room temperature multiferroic vortices in the BiFeO3 system.

Authors:
ORCiD logo [1];  [2];  [3];  [2];  [4];  [2];  [4];  [5];  [6];  [5];  [7];  [8]; ORCiD logo [3];  [4];  [9];  [4]
  1. South China Normal Univ., Guangzhou (China). Inst. for Advanced Materials and Guangdong Provincial Key Lab. of Quantum Engineering and Quantum Materials; Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering and Dept. of Physics; South China Univ. of Technology (SCUT), Guangzhou (China). School of Materials Science and Engineering
  2. Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division
  4. Univ. of California, Berkeley, CA (United States). Dept. of Electrical Engineering and Computer Sciences
  5. South China Normal Univ., Guangzhou (China). Inst. for Advanced Materials and Guangdong Provincial Key Lab. of Quantum Engineering and Quantum Materials
  6. Huazhong Univ. of Science and Technology of China, Wuhan (China). School of Optical and Electronic Information
  7. South China Univ. of Technology, Guangzhou (China). School of Materials Science and Engineering
  8. South Univ. of Science and Technology of China, Shenzhen (China). Dept. of Physics
  9. South China Normal Univ., Guangzhou (China). Inst. for Advanced Materials and Guangdong Provincial Key Lab. of Quantum Engineering and Quantum Materials; Nanjing Univ., Nanjing (China). Lab. of Solid State Microstructures and Innovation Center for Advanced Microstructures
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; National Key Research and Development Program of China; National Science Foundation (NSF); National Natural Science Foundation of China (NSFC); Science and Technology Program of Guangzhou (China)
OSTI Identifier:
1400211
Alternate Identifier(s):
OSTI ID: 1459377
Grant/Contract Number:  
AC05-00OR22725; 2016YFA0201002; EEC-1160504; ECCS-0939514; 51431006; 11474146; 61674062; 51602110; 2016201604030070; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 17; Journal Issue: 1; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; BiFeO3; depolarization field; domain wall; exchange bias; multiferroic; superlattices

Citation Formats

Chen, Deyang, Chen, Zuhuang, He, Qian, Clarkson, James D., Serrao, Claudy R., Yadav, Ajay K., Nowakowski, Mark E., Fan, Zhen, You, Long, Gao, Xingsen, Zeng, Dechang, Chen, Lang, Borisevich, Albina Y., Salahuddin, Sayeef, Liu, Jun -Ming, and Bokor, Jeffrey. Interface Engineering of Domain Structures in BiFeO3 Thin Films. United States: N. p., 2016. Web. doi:10.1021/acs.nanolett.6b04512.
Chen, Deyang, Chen, Zuhuang, He, Qian, Clarkson, James D., Serrao, Claudy R., Yadav, Ajay K., Nowakowski, Mark E., Fan, Zhen, You, Long, Gao, Xingsen, Zeng, Dechang, Chen, Lang, Borisevich, Albina Y., Salahuddin, Sayeef, Liu, Jun -Ming, & Bokor, Jeffrey. Interface Engineering of Domain Structures in BiFeO3 Thin Films. United States. https://doi.org/10.1021/acs.nanolett.6b04512
Chen, Deyang, Chen, Zuhuang, He, Qian, Clarkson, James D., Serrao, Claudy R., Yadav, Ajay K., Nowakowski, Mark E., Fan, Zhen, You, Long, Gao, Xingsen, Zeng, Dechang, Chen, Lang, Borisevich, Albina Y., Salahuddin, Sayeef, Liu, Jun -Ming, and Bokor, Jeffrey. Wed . "Interface Engineering of Domain Structures in BiFeO3 Thin Films". United States. https://doi.org/10.1021/acs.nanolett.6b04512. https://www.osti.gov/servlets/purl/1400211.
@article{osti_1400211,
title = {Interface Engineering of Domain Structures in BiFeO3 Thin Films},
author = {Chen, Deyang and Chen, Zuhuang and He, Qian and Clarkson, James D. and Serrao, Claudy R. and Yadav, Ajay K. and Nowakowski, Mark E. and Fan, Zhen and You, Long and Gao, Xingsen and Zeng, Dechang and Chen, Lang and Borisevich, Albina Y. and Salahuddin, Sayeef and Liu, Jun -Ming and Bokor, Jeffrey},
abstractNote = {A wealth of fascinating phenomena have been discovered at the BiFeO3 domain walls, examples such as domain wall conductivity, photovoltaic effects, and magnetoelectric coupling. Thus, the ability to precisely control the domain structures and accurately study their switching behaviors is critical to realize the next generation of novel devices based on domain wall functionalities. In this work, the introduction of a dielectric layer leads to the tunability of the depolarization field both in the multilayers and superlattices, which provides a novel approach to control the domain patterns of BiFeO3 films. Moreover, we are able to study the switching behavior of the first time obtained periodic 109° stripe domains with a thick bottom electrode. Besides, the precise controlling of pure 71° and 109° periodic stripe domain walls enable us to make a clear demonstration that the exchange bias in the ferromagnet/BiFeO3 system originates from 109° domain walls. Our findings provide future directions to study the room temperature electric field control of exchange bias and open a new pathway to explore the room temperature multiferroic vortices in the BiFeO3 system.},
doi = {10.1021/acs.nanolett.6b04512},
journal = {Nano Letters},
number = 1,
volume = 17,
place = {United States},
year = {Wed Dec 07 00:00:00 EST 2016},
month = {Wed Dec 07 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 60 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Oxide Interfaces--An Opportunity for Electronics
journal, March 2010


Emergent phenomena at oxide interfaces
journal, January 2012

  • Hwang, H. Y.; Iwasa, Y.; Kawasaki, M.
  • Nature Materials, Vol. 11, Issue 2
  • DOI: 10.1038/nmat3223

Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic
journal, September 2016

  • Mundy, Julia A.; Brooks, Charles M.; Holtz, Megan E.
  • Nature, Vol. 537, Issue 7621
  • DOI: 10.1038/nature19343

Interface Physics in Complex Oxide Heterostructures
journal, March 2011


Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology
journal, November 2015


Enhancement of ferroelectricity at metal–oxide interfaces
journal, April 2009

  • Stengel, Massimiliano; Vanderbilt, David; Spaldin, Nicola A.
  • Nature Materials, Vol. 8, Issue 5
  • DOI: 10.1038/nmat2429

Oxide interfaces: pathways to novel phenomena
journal, July 2012


Improper ferroelectricity in perovskite oxide artificial superlattices
journal, April 2008

  • Bousquet, Eric; Dawber, Matthew; Stucki, Nicolas
  • Nature, Vol. 452, Issue 7188
  • DOI: 10.1038/nature06817

Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films
journal, April 2015


Observation of polar vortices in oxide superlattices
journal, January 2016

  • Yadav, A. K.; Nelson, C. T.; Hsu, S. L.
  • Nature, Vol. 530, Issue 7589
  • DOI: 10.1038/nature16463

Polarization Relaxation Induced by a Depolarization Field in Ultrathin Ferroelectric BaTiO 3 Capacitors
journal, December 2005


Enhancement of Ferroelectric Polarization Stability by Interface Engineering
journal, January 2012


Tuning of the Depolarization Field and Nanodomain Structure in Ferroelectric Thin Films
journal, July 2014

  • Lichtensteiger, Céline; Fernandez-Pena, Stéphanie; Weymann, Christian
  • Nano Letters, Vol. 14, Issue 8
  • DOI: 10.1021/nl404734z

Positive Effect of an Internal Depolarization Field in Ultrathin Epitaxial Ferroelectric Films
journal, November 2015

  • Liu, Guangqing; Chen, Jason; Lichtensteiger, Céline
  • Advanced Electronic Materials, Vol. 2, Issue 1
  • DOI: 10.1002/aelm.201500288

Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures
journal, March 2003


Domain patterns in epitaxial rhombohedral ferroelectric films. I. Geometry and experiments
journal, March 1998

  • Streiffer, S. K.; Parker, C. B.; Romanov, A. E.
  • Journal of Applied Physics, Vol. 83, Issue 5
  • DOI: 10.1063/1.366632

Conduction at domain walls in oxide multiferroics
journal, January 2009

  • Seidel, J.; Martin, L. W.; He, Q.
  • Nature Materials, Vol. 8, Issue 3
  • DOI: 10.1038/nmat2373

Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3
journal, November 2011

  • Balke, Nina; Winchester, Benjamin; Ren, Wei
  • Nature Physics, Vol. 8, Issue 1
  • DOI: 10.1038/nphys2132

Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO 3
journal, February 2009


Above-bandgap voltages from ferroelectric photovoltaic devices
journal, January 2010


Photovoltaic property of BiFeO 3 thin films with 109° domains
journal, September 2011

  • Guo, Rui; You, Lu; Chen, Lang
  • Applied Physics Letters, Vol. 99, Issue 12
  • DOI: 10.1063/1.3641905

Role of domain walls in the abnormal photovoltaic effect in BiFeO3
journal, November 2013

  • Bhatnagar, Akash; Roy Chaudhuri, Ayan; Heon Kim, Young
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3835

Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature
journal, September 2006

  • Zhao, T.; Scholl, A.; Zavaliche, F.
  • Nature Materials, Vol. 5, Issue 10
  • DOI: 10.1038/nmat1731

Electric-field control of local ferromagnetism using a magnetoelectric multiferroic
journal, April 2008

  • Chu, Ying-Hao; Martin, Lane W.; Holcomb, Mikel B.
  • Nature Materials, Vol. 7, Issue 6, p. 478-482
  • DOI: 10.1038/nmat2184

Room Temperature Electrical Manipulation of Giant Magnetoresistance in Spin Valves Exchange-Biased with BiFeO 3
journal, February 2012

  • Allibe, Julie; Fusil, Stéphane; Bouzehouane, Karim
  • Nano Letters, Vol. 12, Issue 3
  • DOI: 10.1021/nl202537y

Deterministic switching of ferromagnetism at room temperature using an electric field
journal, December 2014


First-principles study of ferroelectric domain walls in multiferroic bismuth ferrite
journal, September 2009


Magnetotransport at Domain Walls in BiFeO 3
journal, February 2012


Domain structures and magnetoelectric effects in multiferroic nanostructures
journal, December 2016

  • Chen, Deyang; Gao, Xingsen; Liu, Jun-Ming
  • MRS Communications, Vol. 6, Issue 4
  • DOI: 10.1557/mrc.2016.39

Domain wall nanoelectronics
journal, February 2012


BiFeO 3 epitaxial thin films and devices: past, present and future
journal, October 2014


Magnetoelectric Coupling in Well-Ordered Epitaxial BiFeO 3 /CoFe 2 O 4 /SrRuO 3 Heterostructured Nanodot Array
journal, December 2015


Nanoscale Domain Control in Multiferroic BiFeO3 Thin Films
journal, September 2006

  • Chu, Y.-H.; Zhan, Q.; Martin, L. W.
  • Advanced Materials, Vol. 18, Issue 17, p. 2307-2311
  • DOI: 10.1002/adma.200601098

Nanoscale Control of Domain Architectures in BiFeO 3 Thin Films
journal, April 2009

  • Chu, Ying-Hao; He, Qing; Yang, Chan-Ho
  • Nano Letters, Vol. 9, Issue 4
  • DOI: 10.1021/nl900723j

180° Ferroelectric Stripe Nanodomains in BiFeO 3 Thin Films
journal, September 2015


Nanoscale Control of Exchange Bias with BiFeO 3 Thin Films
journal, July 2008

  • Martin, Lane W.; Chu, Ying-Hao; Holcomb, Mikel B.
  • Nano Letters, Vol. 8, Issue 7
  • DOI: 10.1021/nl801391m

Effect of La3+ substitution on the phase transitions, microstructure and electrical properties of Bi1−xLaxFeO3 ceramics
journal, January 2013


Microstructure-electromechanical property correlations in rare-earth-substituted BiFeO3 epitaxial thin films at morphotropic phase boundaries
journal, November 2010

  • Cheng, Ching-Jung; Kan, Daisuke; Anbusathaiah, Varatharajan
  • Applied Physics Letters, Vol. 97, Issue 21
  • DOI: 10.1063/1.3520642

Electric-Field-Induced Magnetization Reversal in a Ferromagnet-Multiferroic Heterostructure
journal, November 2011


Works referencing / citing this record:

Progress in BiFeO 3 -based heterostructures: materials, properties and applications
journal, January 2020


Controllable defect driven symmetry change and domain structure evolution in BiFeO 3 with enhanced tetragonality
journal, January 2019

  • Chen, Chao; Wang, Changan; Cai, Xiangbin
  • Nanoscale, Vol. 11, Issue 17
  • DOI: 10.1039/c9nr00932a

Self-assembled multiferroic perovskite–spinel nanocomposite thin films: epitaxial growth, templating and integration on silicon
journal, January 2019

  • Kim, Dong Hun; Ning, Shuai; Ross, Caroline A.
  • Journal of Materials Chemistry C, Vol. 7, Issue 30
  • DOI: 10.1039/c9tc02033k

Charge-Transfer-Induced Interfacial Exchange Coupling at the Co / Bi Fe O 3 Interface
journal, October 2019


Tuning Effective Spin Hall Angles via Oxygen Vacancies in Multiferroic BiFeO 3 ‐Based Heterostructures
journal, August 2019

  • Liu, Pengfei; Miao, Jun; Liu, Qi
  • Advanced Electronic Materials, Vol. 5, Issue 10
  • DOI: 10.1002/aelm.201900435

BiFeO 3 nanorings synthesized via AAO template-assisted pulsed laser deposition and ion beam etching
journal, January 2017

  • Tian, Guo; Chen, Deyang; Yao, Junxiang
  • RSC Advances, Vol. 7, Issue 65
  • DOI: 10.1039/c7ra07677k

Stripe domains in epitaxial BiFeO 3 thin films on (100) SrTiO 3 substrates
journal, January 2018

  • Chen, Dongfang; Zhao, Donghui; Bai, Zilong
  • Journal of Applied Physics, Vol. 123, Issue 4
  • DOI: 10.1063/1.5009499

High-density array of ferroelectric nanodots with robust and reversibly switchable topological domain states
journal, August 2017


Controllable conductive readout in self-assembled, topologically confined ferroelectric domain walls
journal, July 2018


Design and Manipulation of Ferroic Domains in Complex Oxide Heterostructures
journal, September 2019

  • Strkalj, Nives; Gradauskaite, Elzbieta; Nordlander, Johanna
  • Materials, Vol. 12, Issue 19
  • DOI: 10.3390/ma12193108

Probing ferroic states in oxide thin films using optical second harmonic generation
text, January 2018


Design and Manipulation of Ferroic Domains in Complex Oxide Heterostructures
text, January 2019


Design and Manipulation of Ferroic Domains in Complex Oxide Heterostructures
text, January 2019