skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on July 27, 2018

Title: Effect of in Vivo Deuteration on Structure of Switchgrass Lignin

Biomass deuteration is an effective engineering method that can be used to provide key insights into understanding of biomass recalcitrance and the complex biomass conversion process. In this study, production of deuterated switchgrass was accomplished by growing the plants in 50% D 2O under hydroponic conditions in a perfusion chamber. Cellulolytic enzyme lignin was isolated from deuterated switchgrass, characterized by Fourier transform infrared (FTIR), gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR) and compared with its protiated control sample to determine the effect of in vivo deuteration on the chemical structure of lignin. FTIR results showed that D 2O can be taken up by the roots and transported to the leaves, and deuterium was subsequently incorporated into hydroxyl and alkyl groups in the plant and its lignin through photosynthesis. According to GPC results, deuterated lignin had slightly higher molecular weight, presumably due to isotope effects. 31P and heteronuclear single quantum coherence (HSQC) NMR results revealed that lignin in the deuterated biomass preserved its native physicochemical characteristics. Finally, the conserved characteristics of the deuterated lignin show its great potential applications for structural and dynamic studies of lignocellulose by techniques such as neutron scattering.
Authors:
 [1] ; ORCiD logo [2] ; ORCiD logo [2] ; ORCiD logo [2] ; ORCiD logo [2] ; ORCiD logo [3]
  1. Univ. of Tennessee, Knoxville, TN (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Grant/Contract Number:
AC05-00OR22725
Type:
Accepted Manuscript
Journal Name:
ACS Sustainable Chemistry & Engineering
Additional Journal Information:
Journal Volume: 5; Journal Issue: 9; Journal ID: ISSN 2168-0485
Publisher:
American Chemical Society (ACS)
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Cellulolytic enzyme lignin; Deuteration; In vivo; Neutron scattering; Switchgrass
OSTI Identifier:
1399953