skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on September 13, 2018

Title: Efficiency of fermionic quantum distillation

Here, we present a time-dependent density-matrix renormalization group investigation of the quantum distillation process within the Fermi-Hubbard model on a quasi-one-dimensional ladder geometry. The term distillation refers to the dynamical, spatial separation of singlons and doublons in the sudden expansion of interacting particles in an optical lattice, i.e., the release of a cloud of atoms from a trapping potential. Remarkably, quantum distillation can lead to a contraction of the doublon cloud, resulting in an increased density of the doublons in the core region compared to the initial state. As a main result, we show that this phenomenon is not limited to chains that were previously studied. Interestingly, there are additional dynamical processes on the two-leg ladder such as density oscillations and self-trapping of defects that lead to a less efficient distillation process. An investigation of the time evolution starting from product states provides an explanation for this behavior. Initial product states are also considered since in optical lattice experiments, such states are often used as the initial setup. We propose configurations that lead to a fast and efficient quantum distillation.
Authors:
 [1] ;  [2] ;  [1] ;  [3]
  1. Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Northeastern Univ., Boston, MA (United States)
  3. Ludwig-Maximilians-Univ. Munchen, Munchen (Germany)
Publication Date:
Grant/Contract Number:
AC05-00OR22725; SC0014407
Type:
Accepted Manuscript
Journal Name:
Physical Review A
Additional Journal Information:
Journal Volume: 96; Journal Issue: 3; Journal ID: ISSN 2469-9926
Publisher:
American Physical Society (APS)
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
OSTI Identifier:
1399229
Alternate Identifier(s):
OSTI ID: 1389895