skip to main content


This content will become publicly available on July 15, 2018

Title: Possible bicollinear nematic state with monoclinic lattice distortions in iron telluride compounds

Here, iron telluride (FeTe) is known to display bicollinear magnetic order at low temperatures together with a monoclinic lattice distortion. Because the bicollinear order can involve two different wave vectors (π/2,π/2) and (π/2,–π/2), symmetry considerations allow for the possible stabilization of a nematic state with short-range bicollinear order coupled to monoclinic lattice distortions at a T S higher than the temperature T N where long-range bicollinear order fully develops. As a concrete example, the three-orbital spin-fermion model for iron telluride is studied with an additional coupling ˜λ 12 between the monoclinic lattice strain and an orbital-nematic order parameter with B 2g symmetry. Monte Carlo simulations show that with increasing ˜λ 12 the first-order transition characteristic of FeTe splits and bicollinear nematicity is stabilized in a (narrow) temperature range. In this new regime, the lattice is monoclinically distorted and short-range spin and orbital order breaks rotational invariance. A discussion of possible realizations of this exotic state is provided.
 [1] ;  [1] ;  [1] ;  [1]
  1. Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 96; Journal Issue: 3; Journal ID: ISSN 2469-9950
American Physical Society (APS)
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; chalcogenides; bicollinear antiferromagnetism; nematicity; orbital-lattice coupling
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1372541