DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pressure-tuning of bond-directional exchange interactions and magnetic frustration in hyperhoneycomb iridate β-Li2IrO3

Abstract

Here, we explore the response of Ir 5d orbitals to pressure in β-Li2IrO3, a hyperhoneycomb iridate in proximity to a Kitaev quantum spin-liquid (QSL) ground state. X-ray absorption spectroscopy reveals a reconstruction of the electronic ground state below 2 GPa, the same pressure range where x-ray magnetic circular dichroism shows an apparent collapse of magnetic order. The electronic reconstruction, which manifests a reduction in the effective spin-orbit interaction in 5d orbitals, pushes β-Li2IrO3 further away from the pure Jeff = 1/2 limit. Although lattice symmetry is preserved across the electronic transition, x-ray diffraction shows a highly anisotropic compression of the hyperhoneycomb lattice which affects the balance of bond-directional Ir-Ir exchange interactions driven by spin-orbit coupling at Ir sites. An enhancement of symmetric anisotropic exchange over Kitaev and Heisenberg exchange interactions seen in theoretical calculations that use precisely this anisotropic Ir-Ir bond compression provides one possible route to the realization of a QSL state in this hyperhoneycomb iridate at high pressures.

Authors:
 [1];  [2];  [2];  [3];  [4];  [5];  [2];  [6];  [6];  [7];  [8];  [9];  [10];  [6];  [11];  [11];  [12]
  1. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Argonne National Lab. (ANL), Argonne, IL (United States); Univ. College London, London (United Kingdom)
  2. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
  3. Argonne National Lab. (ANL), Argonne, IL (United States); Center for High Pressure Science & Technology Advanced Research (HPSTAR), Shanghai (China); Chinese Academy of Sciences (CAS), Beijing (China)
  4. Argonne National Lab. (ANL), Argonne, IL (United States); Brazilian Synchrotron Light Lab. (LNLS), Campinas (Brazil)
  5. Argonne National Lab. (ANL), Argonne, IL (United States); Washington Univ., St. Louis, MO (United States); Brookhaven National Lab. (BNL), Upton, NY (United States)
  6. Washington Univ., St. Louis, MO (United States)
  7. Univ. of Toronto, Toronto, ON (Canada)
  8. Univ. of Toronto, Toronto, ON (Canada); Canadian Institute for Advanced Research/Quantum Materials Program, Toronto, ON (Canada)
  9. Center for High Pressure Science & Technology Advanced Research (HPSTAR), Shanghai (China); Carnegie Inst. of Washington, Argonne, IL (United States)
  10. Argonne National Lab. (ANL), Argonne, IL (United States); Northern Illinois Univ., DeKalb, IL (United States)
  11. Max Planck Institute for Solid State Research, Stuttgart (Germany); Univ. of Tokyo, Tokyo (Japan)
  12. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States); Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
Argonne National Laboratory, Advanced Photon Source; USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22), Materials Sciences and Engineering Division; USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1402077
Alternate Identifier(s):
OSTI ID: 1398826; OSTI ID: 1412661
Report Number(s):
BNL-114421-2017-JA
Journal ID: ISSN 0163-1829; 135629; TRN: US1702869
Grant/Contract Number:  
AC02-06CH11357; SC0012704; 1047478; FG02-03ER46097; NA0001974; FG02-99ER45775
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review, B: Condensed Matter
Additional Journal Information:
Journal Volume: 96; Journal Issue: 14; Journal ID: ISSN 0163-1829
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Veiga, L. S. I., Etter, M., Glazyrin, K., Sun, F., Escanhoela, Jr., C. A., Fabbris, G., Mardegan, J. R. L., Malavi, P. S., Deng, Y., Stavropoulos, P. P., Kee, H. -Y., Yang, W. G., van Veenendaal, M., Schilling, J. S., Takayama, T., Takagi, H., and Haskel, D. Pressure-tuning of bond-directional exchange interactions and magnetic frustration in hyperhoneycomb iridate β-Li2IrO3. United States: N. p., 2017. Web. doi:10.1103/PhysRevB.96.140402.
Veiga, L. S. I., Etter, M., Glazyrin, K., Sun, F., Escanhoela, Jr., C. A., Fabbris, G., Mardegan, J. R. L., Malavi, P. S., Deng, Y., Stavropoulos, P. P., Kee, H. -Y., Yang, W. G., van Veenendaal, M., Schilling, J. S., Takayama, T., Takagi, H., & Haskel, D. Pressure-tuning of bond-directional exchange interactions and magnetic frustration in hyperhoneycomb iridate β-Li2IrO3. United States. https://doi.org/10.1103/PhysRevB.96.140402
Veiga, L. S. I., Etter, M., Glazyrin, K., Sun, F., Escanhoela, Jr., C. A., Fabbris, G., Mardegan, J. R. L., Malavi, P. S., Deng, Y., Stavropoulos, P. P., Kee, H. -Y., Yang, W. G., van Veenendaal, M., Schilling, J. S., Takayama, T., Takagi, H., and Haskel, D. Tue . "Pressure-tuning of bond-directional exchange interactions and magnetic frustration in hyperhoneycomb iridate β-Li2IrO3". United States. https://doi.org/10.1103/PhysRevB.96.140402. https://www.osti.gov/servlets/purl/1402077.
@article{osti_1402077,
title = {Pressure-tuning of bond-directional exchange interactions and magnetic frustration in hyperhoneycomb iridate β-Li2IrO3},
author = {Veiga, L. S. I. and Etter, M. and Glazyrin, K. and Sun, F. and Escanhoela, Jr., C. A. and Fabbris, G. and Mardegan, J. R. L. and Malavi, P. S. and Deng, Y. and Stavropoulos, P. P. and Kee, H. -Y. and Yang, W. G. and van Veenendaal, M. and Schilling, J. S. and Takayama, T. and Takagi, H. and Haskel, D.},
abstractNote = {Here, we explore the response of Ir 5d orbitals to pressure in β-Li2IrO3, a hyperhoneycomb iridate in proximity to a Kitaev quantum spin-liquid (QSL) ground state. X-ray absorption spectroscopy reveals a reconstruction of the electronic ground state below 2 GPa, the same pressure range where x-ray magnetic circular dichroism shows an apparent collapse of magnetic order. The electronic reconstruction, which manifests a reduction in the effective spin-orbit interaction in 5d orbitals, pushes β-Li2IrO3 further away from the pure Jeff = 1/2 limit. Although lattice symmetry is preserved across the electronic transition, x-ray diffraction shows a highly anisotropic compression of the hyperhoneycomb lattice which affects the balance of bond-directional Ir-Ir exchange interactions driven by spin-orbit coupling at Ir sites. An enhancement of symmetric anisotropic exchange over Kitaev and Heisenberg exchange interactions seen in theoretical calculations that use precisely this anisotropic Ir-Ir bond compression provides one possible route to the realization of a QSL state in this hyperhoneycomb iridate at high pressures.},
doi = {10.1103/PhysRevB.96.140402},
journal = {Physical Review, B: Condensed Matter},
number = 14,
volume = 96,
place = {United States},
year = {Tue Oct 10 00:00:00 EDT 2017},
month = {Tue Oct 10 00:00:00 EDT 2017}
}

Journal Article:

Citation Metrics:
Cited by: 42 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a,b) Ir L2,3 XANES data at T = 5 K as a function of pressure collected in experimental run 2. (c) Pressure dependence of the branching ratio at T = 5 K and T=300 K measured in independent experiments. The inset shows the pressure dependence of the XMCDmore » signal for two independent experimental runs (run 1 from Ref.[17]). Note that the collapse of net magnetization coincides with the drop in BR. (d, e) Temperature- and field-dependent XMCD signal at selected pressures.« less

Save / Share:

Works referenced in this record:

Incommensurate counterrotating magnetic order stabilized by Kitaev interactions in the layered honeycomb α Li 2 IrO 3
journal, May 2016


Experimental Confirmation of the X-Ray Magnetic Circular Dichroism Sum Rules for Iron and Cobalt
journal, July 1995


Pressure-induced Superconductivity in Elemental Materials
journal, May 2005

  • Shimizu, Katsuya; Amaya, Kiichi; Suzuki, Naoshi
  • Journal of the Physical Society of Japan, Vol. 74, Issue 5
  • DOI: 10.1143/JPSJ.74.1345

Challenges in design of Kitaev materials: Magnetic interactions from competing energy scales
journal, June 2016


Correlated Quantum Phenomena in the Strong Spin-Orbit Regime
journal, March 2014


Evolution of magnetism in the single-crystal honeycomb iridates ( Na 1 x Li x ) 2 Ir O 3
journal, December 2013


The ruby pressure standard to 150GPa
journal, December 2005

  • Chijioke, Akobuije D.; Nellis, W. J.; Soldatov, A.
  • Journal of Applied Physics, Vol. 98, Issue 11
  • DOI: 10.1063/1.2135877

Linear relation between x-ray absorption branching ratio and valence-band spin-orbit expectation value
journal, August 1988


X-ray circular dichroism and local magnetic fields
journal, February 1993


Theory of magnetic phase diagrams in hyperhoneycomb and harmonic-honeycomb iridates
journal, February 2015


Topological crystalline metal in orthorhombic perovskite iridates
journal, March 2015

  • Chen, Yige; Lu, Yuan-Ming; Kee, Hae-Young
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7593

Noncoplanar and Counterrotating Incommensurate Magnetic Order Stabilized by Kitaev Interactions in γ Li 2 IrO 3
journal, November 2014


Local Probe for Spin-Orbit Interaction
journal, May 1988


Topological insulators and metal-insulator transition in the pyrochlore iridates
journal, August 2010


Topological Spinon Semimetals and Gapless Boundary States in Three Dimensions
journal, March 2015


Semimetal and Topological Insulator in Perovskite Iridates
journal, March 2012


Three-dimensional quantum spin liquids in models of harmonic-honeycomb iridates and phase diagram in an infinite- D approximation
journal, November 2014


Realization of a three-dimensional spin–anisotropic harmonic honeycomb iridate
journal, June 2014

  • Modic, K. A.; Smidt, Tess E.; Kimchi, Itamar
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5203

Raman Scattering Signatures of Kitaev Spin Liquids in A 2 IrO 3 Iridates with A = Na or Li
journal, October 2014


Pressure Tuning of the Spin-Orbit Coupled Ground State in Sr 2 IrO 4
journal, July 2012


Calculating branching ratio and spin-orbit coupling from first principles: A formalism and its application to iridates
journal, September 2016


Classical Spin Liquid Instability Driven By Off-Diagonal Exchange in Strong Spin-Orbit Magnets
journal, April 2017


Numerical atomic basis orbitals from H to Kr
journal, May 2004


Zigzag Magnetic Order in the Iridium Oxide Na 2 IrO 3
journal, February 2013


Theory of Raman response in three-dimensional Kitaev spin liquids: Application to β - and γ Li 2 IrO 3 compounds
journal, September 2015


Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet
journal, April 2016

  • Banerjee, A.; Bridges, C. A.; Yan, J. -Q.
  • Nature Materials, Vol. 15, Issue 7
  • DOI: 10.1038/nmat4604

Anyons in an exactly solved model and beyond
journal, January 2006


Spin-Orbit Physics Giving Rise to Novel Phases in Correlated Systems: Iridates and Related Materials
journal, March 2016


Topological and magnetic phases of interacting electrons in the pyrochlore iridates
journal, January 2012


Hyperhoneycomb Iridate β Li 2 IrO 3 as a Platform for Kitaev Magnetism
journal, February 2015


Generic Spin Model for the Honeycomb Iridates beyond the Kitaev Limit
journal, February 2014


VESTA : a three-dimensional visualization system for electronic and structural analysis
journal, May 2008


Resonant x-ray scattering reveals possible disappearance of magnetic order under hydrostatic pressure in the Kitaev candidate γ Li 2 IrO 3
journal, July 2017


Relevance of the Heisenberg-Kitaev Model for the Honeycomb Lattice Iridates A 2 IrO 3
journal, March 2012


Spin Waves and Revised Crystal Structure of Honeycomb Iridate Na 2 IrO 3
journal, March 2012


Pressure dependence of the structure and electronic properties of Sr 3 Ir 2 O 7
journal, May 2016


Kitaev magnetism in honeycomb RuCl 3 with intermediate spin-orbit coupling
journal, June 2015


Magnetic ordering at anomalously high temperatures in Dy at extreme pressures
journal, January 2015


O ( N ) LDA + U electronic structure calculation method based on the nonorthogonal pseudoatomic orbital basis
journal, January 2006


Orbital Magnetism and Spin-Orbit Effects in the Electronic Structure of BaIrO 3
journal, November 2010


Raman spectroscopic signature of fractionalized excitations in the harmonic-honeycomb iridates β- and γ-Li2IrO3
journal, July 2016

  • Glamazda, A.; Lemmens, P.; Do, S. -H.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12286

Antiferromagnetic Mott insulating state in single crystals of the honeycomb lattice material Na 2 IrO 3
journal, August 2010


Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction
journal, March 1988


Different response of transport and magnetic properties of BaIrO 3 to chemical and physical pressure
journal, July 2014


Revealing frustrated local moment model for pressurized hyperhoneycomb iridate: Paving the way toward a quantum spin liquid
journal, December 2016


X-ray circular dichroism as a probe of orbital magnetization
journal, March 1992


Sr 2 Ir 1 x Rh x O 4 ( x < 0.5 ) : An inhomogeneous j eff = 1 2 Hubbard system
journal, August 2015


Mott Insulators in the Strong Spin-Orbit Coupling Limit: From Heisenberg to a Quantum Compass and Kitaev Models
journal, January 2009


Direct evidence for dominant bond-directional interactions in a honeycomb lattice iridate Na2IrO3
journal, May 2015

  • Hwan Chun, Sae; Kim, Jong-Woo; Kim, Jungho
  • Nature Physics, Vol. 11, Issue 6
  • DOI: 10.1038/nphys3322

Predominance of the Kitaev interaction in a three-dimensional honeycomb iridate: From ab initio to spin model
journal, December 2015


Semimetal and Topological Insulator in Perovskite Iridates
text, January 2011


Correlated quantum phenomena in the strong spin-orbit regime
text, January 2013


Generic spin model for the honeycomb iridates beyond the Kitaev limit
text, January 2013


Topological spinon semimetals and gapless boundary states in three dimensions
text, January 2014


Topological Crystalline Metal in Orthorhombic Perovskite Iridates
text, January 2014


Spin-Orbit Physics Giving Rise to Novel Phases in Correlated Systems: Iridates and Related Materials
text, January 2015


Challenges in Design of Kitaev Materials: Magnetic Interactions from Competing Energy Scales
text, January 2016


Works referencing / citing this record:

Concept and realization of Kitaev quantum spin liquids
journal, March 2019

  • Takagi, Hidenori; Takayama, Tomohiro; Jackeli, George
  • Nature Reviews Physics, Vol. 1, Issue 4
  • DOI: 10.1038/s42254-019-0038-2

Lattice dynamics and structural transition of the hyperhoneycomb iridate β Li 2 IrO 3 investigated by high-pressure Raman scattering
journal, February 2020


Electronic and structural response to pressure in the hyperkagome-lattice Na 3 Ir 3 O 8
journal, August 2018


Spin dynamics and field-induced magnetic phase transition in the honeycomb Kitaev magnet α Li 2 IrO 3
journal, February 2019


Hidden Plaquette Order in a Classical Spin Liquid Stabilized by Strong Off-Diagonal Exchange
journal, June 2019


Pressure-Tuned Interactions in Frustrated Magnets: Pathway to Quantum Spin Liquids?
journal, December 2019


Models and Materials for Generalized Kitaev Magnetism
text, January 2017


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.