DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Suppressing Lithium Dendrite Growth by Metallic Coating on a Separator

Abstract

Abstract Lithium (Li) metal is one of the most promising candidates for the anode in high‐energy‐density batteries. However, Li dendrite growth induces a significant safety concerns in these batteries. Here, a multifunctional separator through coating a thin electronic conductive film on one side of the conventional polymer separator facing the Li anode is proposed for the purpose of Li dendrite suppression and cycling stability improvement. The ultrathin Cu film on one side of the polyethylene support serves as an additional conducting agent to facilitate electrochemical stripping/deposition of Li metal with less accumulation of electrically isolated or “dead” Li. Furthermore, its electrically conductive nature guides the backside plating of Li metal and modulates the Li deposition morphology via dendrite merging. In addition, metallic Cu film coating can also improve thermal stability of the separator and enhance the safety of the batteries. Due to its unique beneficial features, this separator enables stable cycling of Li metal anode with enhanced Coulombic efficiency during extended cycles in Li metal batteries and increases the lifetime of Li metal anode by preventing short‐circuit failures even under extensive Li metal deposition.

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1];  [1];  [2];  [3];  [3];  [4];  [4];  [1];  [1]; ORCiD logo [1]
  1. Energy and Environment Directorate Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99354 USA
  2. Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory 3335 Innovation Boulevard Richland WA 99354 USA
  3. Department of Chemical and Biological Engineering Hanbat National University 125 Dongseo‐daero Yuseong‐gu Daejeon 34158 South Korea
  4. Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology 291 Daehak‐ro Yuseong‐gu Daejeon 34141 South Korea
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1398819
Grant/Contract Number:  
DE‐AC02‐05CH11231; DE‐AC05‐76RLO1830
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Functional Materials
Additional Journal Information:
Journal Name: Advanced Functional Materials Journal Volume: 27 Journal Issue: 45; Journal ID: ISSN 1616-301X
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Lee, Hongkyung, Ren, Xiaodi, Niu, Chaojiang, Yu, Lu, Engelhard, Mark H., Cho, Inseong, Ryou, Myung‐Hyun, Jin, Hyun Soo, Kim, Hee‐Tak, Liu, Jun, Xu, Wu, and Zhang, Ji‐Guang. Suppressing Lithium Dendrite Growth by Metallic Coating on a Separator. Germany: N. p., 2017. Web. doi:10.1002/adfm.201704391.
Lee, Hongkyung, Ren, Xiaodi, Niu, Chaojiang, Yu, Lu, Engelhard, Mark H., Cho, Inseong, Ryou, Myung‐Hyun, Jin, Hyun Soo, Kim, Hee‐Tak, Liu, Jun, Xu, Wu, & Zhang, Ji‐Guang. Suppressing Lithium Dendrite Growth by Metallic Coating on a Separator. Germany. https://doi.org/10.1002/adfm.201704391
Lee, Hongkyung, Ren, Xiaodi, Niu, Chaojiang, Yu, Lu, Engelhard, Mark H., Cho, Inseong, Ryou, Myung‐Hyun, Jin, Hyun Soo, Kim, Hee‐Tak, Liu, Jun, Xu, Wu, and Zhang, Ji‐Guang. Tue . "Suppressing Lithium Dendrite Growth by Metallic Coating on a Separator". Germany. https://doi.org/10.1002/adfm.201704391.
@article{osti_1398819,
title = {Suppressing Lithium Dendrite Growth by Metallic Coating on a Separator},
author = {Lee, Hongkyung and Ren, Xiaodi and Niu, Chaojiang and Yu, Lu and Engelhard, Mark H. and Cho, Inseong and Ryou, Myung‐Hyun and Jin, Hyun Soo and Kim, Hee‐Tak and Liu, Jun and Xu, Wu and Zhang, Ji‐Guang},
abstractNote = {Abstract Lithium (Li) metal is one of the most promising candidates for the anode in high‐energy‐density batteries. However, Li dendrite growth induces a significant safety concerns in these batteries. Here, a multifunctional separator through coating a thin electronic conductive film on one side of the conventional polymer separator facing the Li anode is proposed for the purpose of Li dendrite suppression and cycling stability improvement. The ultrathin Cu film on one side of the polyethylene support serves as an additional conducting agent to facilitate electrochemical stripping/deposition of Li metal with less accumulation of electrically isolated or “dead” Li. Furthermore, its electrically conductive nature guides the backside plating of Li metal and modulates the Li deposition morphology via dendrite merging. In addition, metallic Cu film coating can also improve thermal stability of the separator and enhance the safety of the batteries. Due to its unique beneficial features, this separator enables stable cycling of Li metal anode with enhanced Coulombic efficiency during extended cycles in Li metal batteries and increases the lifetime of Li metal anode by preventing short‐circuit failures even under extensive Li metal deposition.},
doi = {10.1002/adfm.201704391},
journal = {Advanced Functional Materials},
number = 45,
volume = 27,
place = {Germany},
year = {2017},
month = {10}
}

Works referenced in this record:

Electrochemical Porosimetry
journal, January 2004

  • Song, Hyun-Kon; Sung, Joo-Hwan; Jung, Yong-Ho
  • Journal of The Electrochemical Society, Vol. 151, Issue 3
  • DOI: 10.1149/1.1641041

Dendrite-Free Lithium Anode via a Homogenous Li-Ion Distribution Enabled by a Kimwipe Paper
journal, January 2017

  • Chang, Chi-Hao; Chung, Sheng-Heng; Manthiram, Arumugam
  • Advanced Sustainable Systems, Vol. 1, Issue 1-2
  • DOI: 10.1002/adsu.201600034

Macroporous Interconnected Hollow Carbon Nanofibers Inspired by Golden-Toad Eggs toward a Binder-Free, High-Rate, and Flexible Electrode
journal, June 2016


Li 2 O-Reinforced Cu Nanoclusters as Porous Structure for Dendrite-Free and Long-Lifespan Lithium Metal Anode
journal, September 2016

  • Zhang, Zhenggang; Xu, Xiaoyue; Wang, Shuwei
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 40
  • DOI: 10.1021/acsami.6b08775

Li–air batteries: Decouple to stabilize
journal, August 2017


Electrolyte additive enabled fast charging and stable cycling lithium metal batteries
journal, March 2017


Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors
journal, September 2012

  • Choi, Nam-Soon; Chen, Zonghai; Freunberger, Stefan A.
  • Angewandte Chemie International Edition, Vol. 51, Issue 40
  • DOI: 10.1002/anie.201201429

Lithium Batteries with Nearly Maximum Metal Storage
journal, May 2017

  • Raji, Abdul-Rahman O.; Villegas Salvatierra, Rodrigo; Kim, Nam Dong
  • ACS Nano, Vol. 11, Issue 6
  • DOI: 10.1021/acsnano.7b02731

Anode-Free Rechargeable Lithium Metal Batteries
journal, August 2016

  • Qian, Jiangfeng; Adams, Brian D.; Zheng, Jianming
  • Advanced Functional Materials, Vol. 26, Issue 39
  • DOI: 10.1002/adfm.201602353

Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance
journal, June 2016


Artificial Protection Film on Lithium Metal Anode toward Long-Cycle-Life Lithium-Oxygen Batteries
journal, August 2015


A new insight on capacity fading of lithium–sulfur batteries: The effect of Li2S phase structure
journal, October 2015


Cathode Surface-Induced, Solvation-Mediated, Micrometer-Sized Li 2 O 2 Cycling for Li-O 2 Batteries
journal, September 2016


Making Li-metal electrodes rechargeable by controlling the dendrite growth direction
journal, June 2017


Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Lithium Metal Anodes: Toward an Improved Understanding of Coupled Morphological, Electrochemical, and Mechanical Behavior
journal, February 2017


Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy
journal, October 2016


Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Transition of lithium growth mechanisms in liquid electrolytes
journal, January 2016

  • Bai, Peng; Li, Ju; Brushett, Fikile R.
  • Energy & Environmental Science, Vol. 9, Issue 10
  • DOI: 10.1039/C6EE01674J

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
journal, March 2016

  • Lin, Dingchang; Liu, Yayuan; Liang, Zheng
  • Nature Nanotechnology, Vol. 11, Issue 7
  • DOI: 10.1038/nnano.2016.32

Quantifying the promise of lithium–air batteries for electric vehicles
journal, January 2014

  • Gallagher, Kevin G.; Goebel, Steven; Greszler, Thomas
  • Energy & Environmental Science, Vol. 7, Issue 5
  • DOI: 10.1039/c3ee43870h

Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

Excellent Cycle Life of Lithium-Metal Anodes in Lithium-Ion Batteries with Mussel-Inspired Polydopamine-Coated Separators
journal, April 2012

  • Ryou, Myung-Hyun; Lee, Dong Jin; Lee, Je-Nam
  • Advanced Energy Materials, Vol. 2, Issue 6
  • DOI: 10.1002/aenm.201100687

Nanoengineered Ultralight and Robust All-Metal Cathode for High-Capacity, Stable Lithium–Oxygen Batteries
journal, May 2017


Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries
journal, June 2010

  • Cui, Li-Feng; Hu, Liangbing; Choi, Jang Wook
  • ACS Nano, Vol. 4, Issue 7
  • DOI: 10.1021/nn100619m

Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration
journal, June 2016

  • Higashi, Shougo; Lee, Seok Woo; Lee, Jang Soo
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11801

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating
journal, February 2016

  • Liang, Zheng; Lin, Dingchang; Zhao, Jie
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 11
  • DOI: 10.1073/pnas.1518188113

Effective Suppression of Dendritic Lithium Growth Using an Ultrathin Coating of Nitrogen and Sulfur Codoped Graphene Nanosheets on Polymer Separator for Lithium Metal Batteries
journal, October 2015

  • Shin, Won-Kyung; Kannan, Aravindaraj G.; Kim, Dong-Won
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 42
  • DOI: 10.1021/acsami.5b07730

Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes
journal, May 2016


Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes
journal, January 2017

  • Chen, Kuan-Hung; Wood, Kevin N.; Kazyak, Eric
  • Journal of Materials Chemistry A, Vol. 5, Issue 23
  • DOI: 10.1039/C7TA00371D

Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries
journal, February 2016

  • Cheng, Xin-Bing; Hou, Ting-Zheng; Zhang, Rui
  • Advanced Materials, Vol. 28, Issue 15
  • DOI: 10.1002/adma.201506124

Li-Anode Protective Layers for Li Rechargeable Batteries via Layer-by-Layer Approaches
journal, April 2014

  • Lee, Sun Hwa; Harding, Jonathon R.; Liu, David S.
  • Chemistry of Materials, Vol. 26, Issue 8
  • DOI: 10.1021/cm404154u

Polymer Nanofiber-Guided Uniform Lithium Deposition for Battery Electrodes
journal, April 2015

  • Liang, Zheng; Zheng, Guangyuan; Liu, Chong
  • Nano Letters, Vol. 15, Issue 5
  • DOI: 10.1021/nl5046318

Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes
journal, August 2015

  • Yang, Chun-Peng; Yin, Ya-Xia; Zhang, Shuai-Feng
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9058

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Metallic anodes for next generation secondary batteries
journal, January 2013

  • Kim, Hansu; Jeong, Goojin; Kim, Young-Ugk
  • Chemical Society Reviews, Vol. 42, Issue 23
  • DOI: 10.1039/c3cs60177c

Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth
journal, February 2016

  • Yan, Kai; Lu, Zhenda; Lee, Hyun-Wook
  • Nature Energy, Vol. 1, Issue 3, Article No. 16010
  • DOI: 10.1038/nenergy.2016.10

The effect of the carbon nanotube buffer layer on the performance of a Li metal battery
journal, January 2016

  • Zhang, Ding; Zhou, Yi; Liu, Changhong
  • Nanoscale, Vol. 8, Issue 21
  • DOI: 10.1039/C6NR00465B

History, Evolution, and Future Status of Energy Storage
journal, May 2012


Promise and reality of post-lithium-ion batteries with high energy densities
journal, March 2016


Structural modulation of lithium metal-electrolyte interface with three-dimensional metallic interlayer for high-performance lithium metal batteries
journal, August 2016

  • Lee, Hongkyung; Song, Jongchan; Kim, Yun-Jung
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep30830

Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth
journal, January 2016

  • Zhang, Rui; Cheng, Xin-Bing; Zhao, Chen-Zi
  • Advanced Materials, Vol. 28, Issue 11
  • DOI: 10.1002/adma.201504117

Highly conductive paper for energy-storage devices
journal, December 2009

  • Hu, Liangbing; Choi, Jang Wook; Yang, Yuan
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 51, p. 21490-21494
  • DOI: 10.1073/pnas.0908858106

Stabilizing Lithium Metal Anodes by Uniform Li-Ion Flux Distribution in Nanochannel Confinement
journal, November 2016

  • Liu, Wei; Lin, Dingchang; Pei, Allen
  • Journal of the American Chemical Society, Vol. 138, Issue 47
  • DOI: 10.1021/jacs.6b08730

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362