skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on July 20, 2018

Title: A hybrid, coupled approach for modeling charged fluids from the nano to the mesoscale

Here, we develop and demonstrate a new, hybrid simulation approach for charged fluids, which combines the accuracy of the nonlocal, classical density functional theory (cDFT) with the efficiency of the Poisson–Nernst–Planck (PNP) equations. The approach is motivated by the fact that the more accurate description of the physics in the cDFT model is required only near the charged surfaces, while away from these regions the PNP equations provide an acceptable representation of the ionic system. We formulate the hybrid approach in two stages. The first stage defines a coupled hybrid model in which the PNP and cDFT equations act independently on two overlapping domains, subject to suitable interface coupling conditions. At the second stage we apply the principles of the alternating Schwarz method to the hybrid model by using the interface conditions to define the appropriate boundary conditions and volume constraints exchanged between the PNP and the cDFT subdomains. Numerical examples with two representative examples of ionic systems demonstrate the numerical properties of the method and its potential to reduce the computational cost of a full cDFT calculation, while retaining the accuracy of the latter near the charged surfaces.
Authors:
 [1] ; ORCiD logo [1] ;  [1] ;  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Report Number(s):
SAND-2016-12911J
Journal ID: ISSN 0021-9991; PII: S0021999117305387
Grant/Contract Number:
AC04-94AL85000
Type:
Accepted Manuscript
Journal Name:
Journal of Computational Physics
Additional Journal Information:
Journal Volume: 348; Journal Issue: C; Journal ID: ISSN 0021-9991
Publisher:
Elsevier
Research Org:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) (SC-21)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 97 MATHEMATICS AND COMPUTING; Charged fluids; Hard sphere model; PNP; Classical density functional theory; Alternating Schwarz method
OSTI Identifier:
1398380