skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Refining mass formulas for astrophysical applications: A Bayesian neural network approach

Publication Date:
Sponsoring Org.:
OSTI Identifier:
Grant/Contract Number:  
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Physical Review C
Additional Journal Information:
Journal Name: Physical Review C Journal Volume: 96 Journal Issue: 4; Journal ID: ISSN 2469-9985
American Physical Society
Country of Publication:
United States

Citation Formats

Utama, R., and Piekarewicz, J.. Refining mass formulas for astrophysical applications: A Bayesian neural network approach. United States: N. p., 2017. Web.
Utama, R., & Piekarewicz, J.. Refining mass formulas for astrophysical applications: A Bayesian neural network approach. United States.
Utama, R., and Piekarewicz, J.. Fri . "Refining mass formulas for astrophysical applications: A Bayesian neural network approach". United States.
title = {Refining mass formulas for astrophysical applications: A Bayesian neural network approach},
author = {Utama, R. and Piekarewicz, J.},
abstractNote = {},
doi = {10.1103/PhysRevC.96.044308},
journal = {Physical Review C},
number = 4,
volume = 96,
place = {United States},
year = {2017},
month = {10}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nuclear mass predictions for the crustal composition of neutron stars: A Bayesian neural network approach
journal, January 2016

Plumbing Neutron Stars to New Depths with the Binding Energy of the Exotic Nuclide Zn 82
journal, January 2013

The 1995 update to the atomic mass evaluation
journal, December 1995

Microscopic mass formulas
journal, July 1995

Multilayer feedforward networks are universal approximators
journal, January 1989

The impact of uncertain nuclear masses near closed shells on the r -process abundance pattern
journal, February 2015

Atomic masses and nuclear ground-state deformations calculated with a new macroscopic-microscopic model
journal, March 1981

The limits of the nuclear landscape
journal, June 2012

  • Erler, Jochen; Birge, Noah; Kortelainen, Markus
  • Nature, Vol. 486, Issue 7404
  • DOI: 10.1038/nature11188

Synthesis of the elements in stars: forty years of progress
journal, October 1997

Outer crust of nonaccreting cold neutron stars
journal, March 2006

  • Rüster, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Jürgen
  • Physical Review C, Vol. 73, Issue 3
  • DOI: 10.1103/PhysRevC.73.035804

The Ground State of Matter at High Densities: Equation of State and Stellar Models
journal, November 1971

  • Baym, Gordon; Pethick, Christopher; Sutherland, Peter
  • The Astrophysical Journal, Vol. 170
  • DOI: 10.1086/151216

The Ame2003 atomic mass evaluation
journal, December 2003

Energy density functional for nuclei and neutron stars
journal, April 2013

Learning and prediction of nuclear stability by neural networks
journal, April 1992

The anatomy of the simplest Duflo–Zuker mass formula
journal, October 2010

Impact of the symmetry energy on the outer crust of nonaccreting neutron stars
journal, August 2008

Nuclear energy density optimization
journal, August 2010

A study on ground-state energies of nuclei by using neural networks
journal, January 2014

Nuclear charge radii: density functional theory meets Bayesian neural networks
journal, October 2016

  • Utama, R.; Chen, Wei-Chia; Piekarewicz, J.
  • Journal of Physics G: Nuclear and Particle Physics, Vol. 43, Issue 11
  • DOI: 10.1088/0954-3899/43/11/114002

Approximation by superpositions of a sigmoidal function
journal, December 1989

  • Cybenko, G.
  • Mathematics of Control, Signals, and Systems, Vol. 2, Issue 4
  • DOI: 10.1007/BF02551274

The impact of individual nuclear properties on r -process nucleosynthesis
journal, January 2016

  • Mumpower, M. R.; Surman, R.; McLaughlin, G. C.
  • Progress in Particle and Nuclear Physics, Vol. 86
  • DOI: 10.1016/j.ppnp.2015.09.001

Nuclear Ground-State Masses and Deformations
journal, March 1995

  • Moller, P.; Nix, J. R.; Myers, W. D.
  • Atomic Data and Nuclear Data Tables, Vol. 59, Issue 2, p. 185-381
  • DOI: 10.1006/adnd.1995.1002

Neural networks that learn to predict probabilities: Global models of nuclear stability and decay
journal, January 1995

High-accuracy mass spectrometry with stored ions
journal, March 2006

Nuclear masses from a unified macroscopic-microscopic model
journal, July 1988

Application of Support Vector Machines to Global Prediction of Nuclear Properties
journal, December 2006

Reaching the limits of nuclear stability
journal, June 2004

Decoding β -decay systematics: A global statistical model for β half-lives
journal, October 2009

Recent trends in the determination of nuclear masses
journal, August 2003

The Ame2012 atomic mass evaluation
journal, December 2012

Bayesian neural networks and density networks
journal, January 1995

  • MacKay, David J. C.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 354, Issue 1
  • DOI: 10.1016/0168-9002(94)00931-7

Nuclear mass systematics using neural networks
journal, November 2004

Comparison of Approximate Methods for Handling Hyperparameters
journal, July 1999

Impact of individual nuclear masses on r -process abundances
journal, September 2015

Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XII. Stiffness and stability of neutron-star matter
journal, September 2010

The Nuclear Physics of Neutron Stars
journal, January 2016

Synthesis of the Elements in Stars
journal, October 1957

  • Burbidge, E. Margaret; Burbidge, G. R.; Fowler, William A.
  • Reviews of Modern Physics, Vol. 29, Issue 4
  • DOI: 10.1103/RevModPhys.29.547

Network calculations for r-process nucleosynthesis
journal, January 2010

Neural network models of nuclear systematics
journal, February 1993