DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Polyphosphazene polymer development for mixed matrix membranes using SIFSIX-Cu-2i as performance enhancement filler particles

Abstract

Phosphazene-based polymers were synthesized by using different pendant groups such as trifluoroethoxy (TFE), phenoxy (PHO) and octafluoropentoxy (OFP). High performance methoxyethoxyethoxy/cyclohexoxy (MEE/CH) based polyphosphazene was developed for the first time in literature using a mixed-substitution method. The structural, chemical, and thermal properties of these polymers were analyzed using several techniques such as Gel Permeation Chromatography (GPC), Thermal Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and Nuclear Magnetic Resonance (NMR). Significant differences in gas transport properties of gases have been observed between these pendant groups because of their differences in glass transition temperature and physical interaction with CO2. For the first time, we report on the high performance of TFE polyphophazene based mixed matrix membranes (MMMs) using a SIFSIX-Cu-2i (SIFSIX) metal organic framework (MOF) as the filler particles. These MMMs showed a significant improvement in both CO2 permeability and CO2/N2 selectivity compared to pure TFE polyphosphazene membranes. As a result, the excellent gas transport properties of these membranes make them very promising material for carbon capture applications.

Authors:
 [1];  [2];  [3];  [4];  [4];  [5];  [2];  [4];  [4];  [3]
  1. DOE National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); AECOM, Pittsburgh, PA (United States)
  2. Univ. of Pittsburgh, Pittsburgh, PA (United States)
  3. Pennsylvania State Univ., University Park, PA (United States)
  4. DOE National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)
  5. DOE National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Carnegie Mellon Univ., Pittsburgh, PA (United States)
Publication Date:
Research Org.:
National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)
Sponsoring Org.:
USDOE Office of Fossil Energy (FE)
OSTI Identifier:
1415616
Alternate Identifier(s):
OSTI ID: 1397078
Report Number(s):
A-CONTR-PUB-056
Journal ID: ISSN 0376-7388; PII: S0376738817303101; TRN: US1800843
Grant/Contract Number:  
FE0004000
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Membrane Science
Additional Journal Information:
Journal Volume: 535; Journal Issue: C; Journal ID: ISSN 0376-7388
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Polyphosphazene; Metal organic frameworks; Mixed matrix membranes; CO2 capture

Citation Formats

Venna, Surendar R., Spore, Alex, Tian, Zhicheng, Marti, Anne M., Albenze, Erik J., Nulwala, Hunaid B., Rosi, Nathaniel L., Luebke, David R., Hopkinson, David P., and Allcock, Harry R. Polyphosphazene polymer development for mixed matrix membranes using SIFSIX-Cu-2i as performance enhancement filler particles. United States: N. p., 2017. Web. doi:10.1016/j.memsci.2017.04.033.
Venna, Surendar R., Spore, Alex, Tian, Zhicheng, Marti, Anne M., Albenze, Erik J., Nulwala, Hunaid B., Rosi, Nathaniel L., Luebke, David R., Hopkinson, David P., & Allcock, Harry R. Polyphosphazene polymer development for mixed matrix membranes using SIFSIX-Cu-2i as performance enhancement filler particles. United States. https://doi.org/10.1016/j.memsci.2017.04.033
Venna, Surendar R., Spore, Alex, Tian, Zhicheng, Marti, Anne M., Albenze, Erik J., Nulwala, Hunaid B., Rosi, Nathaniel L., Luebke, David R., Hopkinson, David P., and Allcock, Harry R. Wed . "Polyphosphazene polymer development for mixed matrix membranes using SIFSIX-Cu-2i as performance enhancement filler particles". United States. https://doi.org/10.1016/j.memsci.2017.04.033. https://www.osti.gov/servlets/purl/1415616.
@article{osti_1415616,
title = {Polyphosphazene polymer development for mixed matrix membranes using SIFSIX-Cu-2i as performance enhancement filler particles},
author = {Venna, Surendar R. and Spore, Alex and Tian, Zhicheng and Marti, Anne M. and Albenze, Erik J. and Nulwala, Hunaid B. and Rosi, Nathaniel L. and Luebke, David R. and Hopkinson, David P. and Allcock, Harry R.},
abstractNote = {Phosphazene-based polymers were synthesized by using different pendant groups such as trifluoroethoxy (TFE), phenoxy (PHO) and octafluoropentoxy (OFP). High performance methoxyethoxyethoxy/cyclohexoxy (MEE/CH) based polyphosphazene was developed for the first time in literature using a mixed-substitution method. The structural, chemical, and thermal properties of these polymers were analyzed using several techniques such as Gel Permeation Chromatography (GPC), Thermal Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and Nuclear Magnetic Resonance (NMR). Significant differences in gas transport properties of gases have been observed between these pendant groups because of their differences in glass transition temperature and physical interaction with CO2. For the first time, we report on the high performance of TFE polyphophazene based mixed matrix membranes (MMMs) using a SIFSIX-Cu-2i (SIFSIX) metal organic framework (MOF) as the filler particles. These MMMs showed a significant improvement in both CO2 permeability and CO2/N2 selectivity compared to pure TFE polyphosphazene membranes. As a result, the excellent gas transport properties of these membranes make them very promising material for carbon capture applications.},
doi = {10.1016/j.memsci.2017.04.033},
journal = {Journal of Membrane Science},
number = C,
volume = 535,
place = {United States},
year = {Wed Apr 19 00:00:00 EDT 2017},
month = {Wed Apr 19 00:00:00 EDT 2017}
}

Journal Article:

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program
journal, January 2008

  • Figueroa, José D.; Fout, Timothy; Plasynski, Sean
  • International Journal of Greenhouse Gas Control, Vol. 2, Issue 1, p. 9-20
  • DOI: 10.1016/S1750-5836(07)00094-1

Opportunities and challenges in carbon dioxide capture
journal, June 2013


Synthesis, characterization, and gas permeability of a series of 4-phenylphenoxy/phenoxy substituted polyphosphazene membranes
journal, May 2009

  • Muldoon, John G.; Pintauro, Peter N.; Wysick, Ryzard J.
  • Journal of Membrane Science, Vol. 334, Issue 1-2
  • DOI: 10.1016/j.memsci.2009.02.016

Gas permeability in rubbery polyphosphazene membranes
journal, September 2006

  • Orme, Christopher J.; Klaehn, John R.; Harrup, Mason K.
  • Journal of Membrane Science, Vol. 280, Issue 1-2
  • DOI: 10.1016/j.memsci.2006.01.009

Mixed gas hydrogen sulfide permeability and separation using supported polyphosphazene membranes
journal, May 2005


Characterization of gas transport in selected rubbery amorphous polyphosphazene membranes
journal, May 2001


Polyphosphazene membranes with phenoxyls for enhanced desulfurization
journal, January 2012

  • Yang, Zhengjin; Wang, Zhiqiang; Li, Jiding
  • RSC Advances, Vol. 2, Issue 30
  • DOI: 10.1039/c2ra21418k

Phosphonitrilic Compounds. VI. High Molecular Weight Poly(alkoxy- and aryloxyphosphazenes)
journal, October 1966

  • Allcock, H. R.; Kugel, R. L.; Valan, K. J.
  • Inorganic Chemistry, Vol. 5, Issue 10
  • DOI: 10.1021/ic50044a016

Poly[(amino acid ester)phosphazenes]: Synthesis, Crystallinity, and Hydrolytic Sensitivity in Solution and the Solid State
journal, February 1994

  • Allcock, Harry R.; Pucher, Shawn R.; Scopelianos, Angelo G.
  • Macromolecules, Vol. 27, Issue 5
  • DOI: 10.1021/ma00083a001

Effects of organic side group structures on the properties of poly(organophosphazenes)
journal, February 1988

  • Allcock, Harry R.; Connolly, Mark S.; Sisko, John T.
  • Macromolecules, Vol. 21, Issue 2
  • DOI: 10.1021/ma00180a008

Polyphosphazene polymers for tissue engineering: an analysis of material synthesis, characterization and applications
journal, January 2010

  • Deng, Meng; Kumbar, Sangamesh G.; Wan, Yuqing
  • Soft Matter, Vol. 6, Issue 14
  • DOI: 10.1039/b926402g

Synthesis of High Polymeric Alkoxy- and Aryloxyphosphonitriles
journal, September 1965

  • Allcock, H. R.; Kugel, R. L.
  • Journal of the American Chemical Society, Vol. 87, Issue 18
  • DOI: 10.1021/ja01096a056

Poly[bis(2,2,2-trifluoroethoxy)phosphazene] Superhydrophobic Nanofibers
journal, December 2005

  • Singh, Anurima; Steely, Lee; Allcock, Harry R.
  • Langmuir, Vol. 21, Issue 25
  • DOI: 10.1021/la052110v

Influence of Terminal Phenyl Groups on the Side Chains of Phosphazene Polymers:  Structure−Property Relationships and Polymer Electrolyte Behavior
journal, January 2007

  • Conner, Denise A.; Welna, Daniel T.; Chang, Youngkyu
  • Macromolecules, Vol. 40, Issue 2
  • DOI: 10.1021/ma061916e

Novel Highly Fluorinated Perfluorocyclobutane-Based Phosphazene Polymers for Photonic Applications
journal, November 2007

  • Cho, Song Yun; Allcock, Harry R.
  • Chemistry of Materials, Vol. 19, Issue 25
  • DOI: 10.1021/cm702066k

Characterization of Substituted Polyphosphazene Membranes − Pure and Mixed Gas Results
journal, August 2006

  • Jha, Praveen; Mason, Larry W.; Way, J. Douglas
  • Industrial & Engineering Chemistry Research, Vol. 45, Issue 19
  • DOI: 10.1021/ie0604021

Membrane-based gas separation
journal, August 1993


Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes
journal, January 1999


Mixed matrix membranes using carbon molecular sieves
journal, January 2003


Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation
journal, April 2007


Non-ideal effects in organic–inorganic materials for gas separation membranes
journal, April 2005


Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles
journal, January 2015

  • Venna, Surendar R.; Lartey, Michael; Li, Tao
  • Journal of Materials Chemistry A, Vol. 3, Issue 9
  • DOI: 10.1039/C4TA05225K

Metal–Organic Frameworks for Separations
journal, September 2011

  • Li, Jian-Rong; Sculley, Julian; Zhou, Hong-Cai
  • Chemical Reviews, Vol. 112, Issue 2, p. 869-932
  • DOI: 10.1021/cr200190s

Metal–organic frameworks—prospective industrial applications
journal, January 2006

  • Mueller, U.; Schubert, M.; Teich, F.
  • J. Mater. Chem., Vol. 16, Issue 7
  • DOI: 10.1039/B511962F

Knudsen diffusion through ZIF-8 membranes synthesized by secondary seeded growth
journal, December 2013


Highly Permeable Zeolite Imidazolate Framework-8 Membranes for CO 2 /CH 4 Separation
journal, January 2010

  • Venna, Surendar R.; Carreon, Moises A.
  • Journal of the American Chemical Society, Vol. 132, Issue 1
  • DOI: 10.1021/ja909263x

Carbon Dioxide Capture in Metal–Organic Frameworks
journal, September 2011

  • Sumida, Kenji; Rogow, David L.; Mason, Jarad A.
  • Chemical Reviews, Vol. 112, Issue 2, p. 724-781
  • DOI: 10.1021/cr2003272

Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture
journal, June 2014

  • Shekhah, Osama; Belmabkhout, Youssef; Chen, Zhijie
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5228

Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation
journal, February 2013

  • Nugent, Patrick; Belmabkhout, Youssef; Burd, Stephen D.
  • Nature, Vol. 495, Issue 7439, p. 80-84
  • DOI: 10.1038/nature11893

Low concentration CO2 capture using physical adsorbents: Are metal–organic frameworks becoming the new benchmark materials?
journal, July 2016

  • Belmabkhout, Youssef; Guillerm, Vincent; Eddaoudi, Mohamed
  • Chemical Engineering Journal, Vol. 296
  • DOI: 10.1016/j.cej.2016.03.124

Effect of the structural constituents of metal organic frameworks on carbon dioxide capture
journal, January 2016


Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials
journal, June 2000


Asymmetric Matrimid®/[Cu3(BTC)2] mixed-matrix membranes for gas separations
journal, October 2010

  • Basu, Subhankar; Cano-Odena, Angels; Vankelecom, Ivo F. J.
  • Journal of Membrane Science, Vol. 362, Issue 1-2
  • DOI: 10.1016/j.memsci.2010.07.005

Modulated UiO-66-Based Mixed-Matrix Membranes for CO 2 Separation
journal, November 2015

  • Anjum, M. Waqas; Vermoortele, Frederik; Khan, Asim Laeeq
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 45
  • DOI: 10.1021/acsami.5b08964

Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation
journal, September 2012


Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes
journal, September 2010

  • Ordoñez, Ma. Josephine C.; Balkus, Kenneth J.; Ferraris, John P.
  • Journal of Membrane Science, Vol. 361, Issue 1-2, p. 28-37
  • DOI: 10.1016/j.memsci.2010.06.017

Mixed-matrix membranes containing MOF-5 for gas separations
journal, February 2009

  • Perez, Edson V.; Balkus, Kenneth J.; Ferraris, John P.
  • Journal of Membrane Science, Vol. 328, Issue 1-2, p. 165-173
  • DOI: 10.1016/j.memsci.2008.12.006

Mechanical properties of low nano-silica filled high density polyethylene composites
journal, February 2003

  • Zhang, Ming Qiu; Rong, Min Zhi; Zhang, Hai Bo
  • Polymer Engineering & Science, Vol. 43, Issue 2
  • DOI: 10.1002/pen.10040

Structure–property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites
journal, January 2001


Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation
journal, January 2012

  • Song, Qilei; Nataraj, S. K.; Roussenova, Mina V.
  • Energy & Environmental Science, Vol. 5, Issue 8
  • DOI: 10.1039/c2ee21996d

Sorption and diffusion of organic vapors in poly[bis(trifluoroethoxy) phosphazene] and poly[bis(phenoxy)phosphazene] membranes
journal, October 1997


Polyphosphazenes: Synthesis?properties?applications
journal, May 1975

  • Singler, Robert E.; Schneider, Nathaniel S.; Hagnauer, Gary L.
  • Polymer Engineering and Science, Vol. 15, Issue 5
  • DOI: 10.1002/pen.760150502

Ultrapermeable, Reverse-Selective Nanocomposite Membranes
journal, April 2002


Silica-Treated Ceramic Substrates for Formation of Polymer-Ceramic Composite Membranes
journal, January 1995

  • Moaddeb, Maryam; Koros, William J.
  • Industrial & Engineering Chemistry Research, Vol. 34, Issue 1
  • DOI: 10.1021/ie00040a028

Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review
journal, March 2013

  • Bastani, Dariush; Esmaeili, Nazila; Asadollahi, Mahdieh
  • Journal of Industrial and Engineering Chemistry, Vol. 19, Issue 2, p. 375-393
  • DOI: 10.1016/j.jiec.2012.09.019

An automated lab-scale flue gas permeation membrane testing system at the National Carbon Capture Center
journal, July 2017


Works referencing / citing this record:

High-throughput computational prediction of the cost of carbon capture using mixed matrix membranes
journal, January 2019

  • Budhathoki, Samir; Ajayi, Olukayode; Steckel, Janice A.
  • Energy & Environmental Science, Vol. 12, Issue 4
  • DOI: 10.1039/c8ee02582g

Microporous polymeric composite membranes with advanced film properties: pore intercalation yields excellent CO 2 separation performance
journal, January 2018

  • Sekizkardes, Ali K.; Kusuma, Victor A.; McNally, Joshua S.
  • Journal of Materials Chemistry A, Vol. 6, Issue 45
  • DOI: 10.1039/c8ta07424k

Development of ethanolamine-based ionic liquid membranes for efficient CO 2 /CH 4 separation
journal, July 2017

  • Ur Rehman, Rashid; Rafiq, Sikander; Muhammad, Nawshad
  • Journal of Applied Polymer Science, Vol. 134, Issue 44
  • DOI: 10.1002/app.45395