skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Chemistry, Mineralogy, and Grain Properties at Namib and High Dunes, Bagnold Dune Field, Gale Crater, Mars: A Synthesis of Curiosity Rover Observations: Bagnold Dune Sands Composition

Abstract

The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine- to medium- sized (~45-500 µm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nonetheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet, Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si-enriched relative to other soils at Gale crater, and H2O, S, and Cl are lower relative to all previously measured martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands, corroborated by VNIR spectra that suggest enrichment of olivine. Together, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in martian soils: (1) amorphous components in the sand-sized fraction (represented bymore » Bagnold) that are Si-enriched, hydroxylated alteration products and/or impact or volcanic glasses; and (2) amorphous components in the fine fraction (<40 µm; represented by Rocknest and other bright soils) that are Fe-, S-, and Cl-enriched with low Si and adsorbed and structural H2O.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4];  [5]; ORCiD logo [6]; ORCiD logo [7]; ORCiD logo [1]; ORCiD logo [8]; ORCiD logo [9]; ORCiD logo [10];  [11]; ORCiD logo [12];  [4]; ORCiD logo [13]; ORCiD logo [14]; ORCiD logo [15];  [13]; ORCiD logo [10];  [1] more »; ORCiD logo [11];  [16];  [1]; ORCiD logo [12]; ORCiD logo [17];  [18];  [1];  [17]; ORCiD logo [19];  [16]; ORCiD logo [20]; ORCiD logo [21]; ORCiD logo [22]; ORCiD logo [6]; ORCiD logo [19]; ORCiD logo [23]; ORCiD logo [1];  [12]; ORCiD logo [24];  [1] « less
  1. California Inst. of Technology (CalTech), Pasadena, CA (United States). Jet Propulsion Lab.
  2. Malin Space Science Systems, San Diego, CA (United States)
  3. Jacobs Technology, Houston, TX (United States); NASA Johnson Space Center, Houston, TX (United States)
  4. Univ. of Arizona, Tucson, AZ (United States). Dept. of Geosciences
  5. Russian Academy of Sciences (RAS), Moscow (Russian Federation). Space Research Inst.
  6. California Inst. of Technology (CalTech), Pasadena, CA (United States)
  7. Cornell Univ., Ithaca, NY (United States). Cornell Center for Astrophysics and Planetary Sciences
  8. Washington Univ., St. Louis, MO (United States). Dept. of Earth and Planetary Sciences
  9. NASA Ames Research Center (ARC), Moffett Field, CA (United States). Exobiology Branch
  10. Johns Hopkins Univ., Laurel, MD (United States)
  11. NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States)
  12. Univ. of Toulouse (France). Inst. for Research in Astrophysics and Planetology (IRAP)
  13. Arizona State Univ., Tempe, AZ (United States). School of Earth and Space Exploration
  14. Univ. of Guelph, ON (Canada)
  15. Southwest Research Inst. (SwRI), San Antonio, TX (United States). Dept. of Space Science
  16. Univ. of Toulouse (France). Inst. for Research in Astrophysics and Planetology (IRAP), Midi-Pyrenees Observatory
  17. NASA Johnson Space Center, Houston, TX (United States)
  18. Johns Hopkins University Applied Physics Laboratory, Laurel MD USA
  19. Univ. of New Brunswick, Fredericton NB (Canada). Planetary and Space Science Centre
  20. Univ. of Hawaii, Honolulu, HI (United States). Dept. of Geology and Geophysics
  21. Inst. for Research in Astrophysics and Planetology (IRAP), Toulouse (France); German Aerospace Center (DLR), Berlin (Germany). Inst. of Optical Sensor Systems
  22. Stony Brook Univ., NY (United States). Dept. of Geosciences
  23. Planetary Science Inst., Tucson AZ (United States)
  24. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE; National Aeronautics and Space Administration (NASA)
OSTI Identifier:
1396141
Report Number(s):
LA-UR-17-27682
Journal ID: ISSN 2169-9097
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Geophysical Research. Planets
Additional Journal Information:
Journal Volume: 122; Journal Issue: 12; Journal ID: ISSN 2169-9097
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; Planetary Sciences

Citation Formats

Ehlmann, B. L., Edgett, K. S., Sutter, B., Achilles, C. N., Litvak, M. L., Lapotre, M. G. A., Sullivan, R., Fraeman, A. A., Arvidson, R. E., Blake, D. F., Bridges, N. T., Conrad, P. G., Cousin, A., Downs, R. T., Gabriel, T. S. J., Gellert, R., Hamilton, V. E., Hardgrove, C., Johnson, J. R., Kuhn, S., Mahaffy, P. R., Maurice, S., McHenry, M., Meslin, P. -Y., Ming, D. W., Minitti, M. E., Morookian, J. M., Morris, R. V., O'Connell-Cooper, C. D., Pinet, P. C., Rowland, S. K., Schröder, S., Siebach, K. L., Stein, N. T., Thompson, L. M., Vaniman, D. T., Vasavada, A. R., Wellington, D. F., Wiens, R. C., and Yen, A. S. Chemistry, Mineralogy, and Grain Properties at Namib and High Dunes, Bagnold Dune Field, Gale Crater, Mars: A Synthesis of Curiosity Rover Observations: Bagnold Dune Sands Composition. United States: N. p., 2017. Web. doi:10.1002/2017JE005267.
Ehlmann, B. L., Edgett, K. S., Sutter, B., Achilles, C. N., Litvak, M. L., Lapotre, M. G. A., Sullivan, R., Fraeman, A. A., Arvidson, R. E., Blake, D. F., Bridges, N. T., Conrad, P. G., Cousin, A., Downs, R. T., Gabriel, T. S. J., Gellert, R., Hamilton, V. E., Hardgrove, C., Johnson, J. R., Kuhn, S., Mahaffy, P. R., Maurice, S., McHenry, M., Meslin, P. -Y., Ming, D. W., Minitti, M. E., Morookian, J. M., Morris, R. V., O'Connell-Cooper, C. D., Pinet, P. C., Rowland, S. K., Schröder, S., Siebach, K. L., Stein, N. T., Thompson, L. M., Vaniman, D. T., Vasavada, A. R., Wellington, D. F., Wiens, R. C., & Yen, A. S. Chemistry, Mineralogy, and Grain Properties at Namib and High Dunes, Bagnold Dune Field, Gale Crater, Mars: A Synthesis of Curiosity Rover Observations: Bagnold Dune Sands Composition. United States. doi:10.1002/2017JE005267.
Ehlmann, B. L., Edgett, K. S., Sutter, B., Achilles, C. N., Litvak, M. L., Lapotre, M. G. A., Sullivan, R., Fraeman, A. A., Arvidson, R. E., Blake, D. F., Bridges, N. T., Conrad, P. G., Cousin, A., Downs, R. T., Gabriel, T. S. J., Gellert, R., Hamilton, V. E., Hardgrove, C., Johnson, J. R., Kuhn, S., Mahaffy, P. R., Maurice, S., McHenry, M., Meslin, P. -Y., Ming, D. W., Minitti, M. E., Morookian, J. M., Morris, R. V., O'Connell-Cooper, C. D., Pinet, P. C., Rowland, S. K., Schröder, S., Siebach, K. L., Stein, N. T., Thompson, L. M., Vaniman, D. T., Vasavada, A. R., Wellington, D. F., Wiens, R. C., and Yen, A. S. Mon . "Chemistry, Mineralogy, and Grain Properties at Namib and High Dunes, Bagnold Dune Field, Gale Crater, Mars: A Synthesis of Curiosity Rover Observations: Bagnold Dune Sands Composition". United States. doi:10.1002/2017JE005267. https://www.osti.gov/servlets/purl/1396141.
@article{osti_1396141,
title = {Chemistry, Mineralogy, and Grain Properties at Namib and High Dunes, Bagnold Dune Field, Gale Crater, Mars: A Synthesis of Curiosity Rover Observations: Bagnold Dune Sands Composition},
author = {Ehlmann, B. L. and Edgett, K. S. and Sutter, B. and Achilles, C. N. and Litvak, M. L. and Lapotre, M. G. A. and Sullivan, R. and Fraeman, A. A. and Arvidson, R. E. and Blake, D. F. and Bridges, N. T. and Conrad, P. G. and Cousin, A. and Downs, R. T. and Gabriel, T. S. J. and Gellert, R. and Hamilton, V. E. and Hardgrove, C. and Johnson, J. R. and Kuhn, S. and Mahaffy, P. R. and Maurice, S. and McHenry, M. and Meslin, P. -Y. and Ming, D. W. and Minitti, M. E. and Morookian, J. M. and Morris, R. V. and O'Connell-Cooper, C. D. and Pinet, P. C. and Rowland, S. K. and Schröder, S. and Siebach, K. L. and Stein, N. T. and Thompson, L. M. and Vaniman, D. T. and Vasavada, A. R. and Wellington, D. F. and Wiens, R. C. and Yen, A. S.},
abstractNote = {The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine- to medium- sized (~45-500 µm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nonetheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet, Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si-enriched relative to other soils at Gale crater, and H2O, S, and Cl are lower relative to all previously measured martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands, corroborated by VNIR spectra that suggest enrichment of olivine. Together, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or impact or volcanic glasses; and (2) amorphous components in the fine fraction (<40 µm; represented by Rocknest and other bright soils) that are Fe-, S-, and Cl-enriched with low Si and adsorbed and structural H2O.},
doi = {10.1002/2017JE005267},
journal = {Journal of Geophysical Research. Planets},
number = 12,
volume = 122,
place = {United States},
year = {2017},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 26 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Mineralogy of an active eolian sediment from the Namib dune, Gale crater, Mars: In Situ Mineralogy of the Bagnold Dunes
journal, November 2017

  • Achilles, C. N.; Downs, R. T.; Ming, D. W.
  • Journal of Geophysical Research: Planets, Vol. 122, Issue 11
  • DOI: 10.1002/2017JE005262

ChemCam results from the Shaler outcrop in Gale crater, Mars
journal, March 2015


The analysis of water in the Martian regolith
journal, March 1979

  • Anderson, D. M.; Tice, A. R.
  • Journal of Molecular Evolution, Vol. 14, Issue 1-3
  • DOI: 10.1007/BF01732365

Collecting Samples in Gale Crater, Mars; an Overview of the Mars Science Laboratory Sample Acquisition, Sample Processing and Handling System
journal, June 2012


Localization and Physical Properties Experiments Conducted by Spirit at Gusev Crater
journal, August 2004


Localization and Physical Property Experiments Conducted by Opportunity at Meridiani Planum
journal, December 2004


Water in the Martian regolith from OMEGA/Mars Express: Mars 3 µm absorption and water mobility
journal, August 2014

  • Audouard, Joachim; Poulet, François; Vincendon, Mathieu
  • Journal of Geophysical Research: Planets, Vol. 119, Issue 8
  • DOI: 10.1002/2014JE004649

Spectroscopic study of the Moses Lake dune field, Washington: Determination of compositional distributions and source lithologies: SPECTROSCOPY OF MOSES LAKE DUNES
journal, November 2002

  • Bandfield, Joshua L.; Edgett, Kenneth S.; Christensen, Philip R.
  • Journal of Geophysical Research: Planets, Vol. 107, Issue E11
  • DOI: 10.1029/2000JE001469

A global Mars dust composition refined by the Alpha‐Particle X‐ray Spectrometer in Gale Crater
journal, January 2016

  • Berger, Jeff A.; Schmidt, Mariek E.; Gellert, Ralf
  • Geophysical Research Letters, Vol. 43, Issue 1
  • DOI: 10.1002/2015GL066675

Results from the ISM experiment
journal, October 1989

  • Bibring, J. -P.; Combes, M.; Langevin, Y.
  • Nature, Vol. 341, Issue 6243
  • DOI: 10.1038/341591a0

X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater
journal, September 2013


Characterization and Calibration of the CheMin Mineralogical Instrument on Mars Science Laboratory
journal, June 2012


Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow
journal, September 2013


The Mars Science Laboratory (MSL) Bagnold Dunes Campaign, Phase I: Overview and introduction to the special issue: Bagnold Dunes Campaign Overview
journal, January 2018

  • Bridges, Nathan T.; Ehlmann, Bethany L.
  • Journal of Geophysical Research: Planets, Vol. 123, Issue 1
  • DOI: 10.1002/2017JE005401

Planet-wide sand motion on Mars
journal, November 2011

  • Bridges, N. T.; Bourke, M. C.; Geissler, P. E.
  • Geology, Vol. 40, Issue 1
  • DOI: 10.1130/G32373.1

The rock abrasion record at Gale Crater: Mars Science Laboratory results from Bradbury Landing to Rocknest: ABRASION AT GALE CRATER
journal, June 2014

  • Bridges, N. T.; Calef, F. J.; Hallet, B.
  • Journal of Geophysical Research: Planets, Vol. 119, Issue 6
  • DOI: 10.1002/2013JE004579

The origin and implications of clay minerals from Yellowknife Bay, Gale crater, Mars
journal, April 2015


Mineralogy and stratigraphy of the Gale crater rim, wall, and floor units: Gale Crater Mineralogy and Stratigraphy
journal, May 2017

  • Buz, Jennifer; Ehlmann, Bethany L.; Pan, Lu
  • Journal of Geophysical Research: Planets, Vol. 122, Issue 5
  • DOI: 10.1002/2016JE005163

Soil sedimentology at Gusev Crater from Columbia Memorial Station to Winter Haven
journal, January 2008

  • Cabrol, Nathalie A.; Herkenhoff, Kenneth E.; Greeley, Ronald
  • Journal of Geophysical Research, Vol. 113, Issue E6
  • DOI: 10.1029/2007JE002953

Sands at Gusev Crater, Mars: Sands at Gusev Crater, Mars
journal, May 2014

  • Cabrol, Nathalie A.; Herkenhoff, Kenneth; Knoll, Andrew H.
  • Journal of Geophysical Research: Planets, Vol. 119, Issue 5
  • DOI: 10.1002/2013JE004535

Calibration of the Mars Science Laboratory Alpha Particle X-ray Spectrometer
journal, April 2012

  • Campbell, John L.; Perrett, Glynis M.; Gellert, Ralf
  • Space Science Reviews, Vol. 170, Issue 1-4
  • DOI: 10.1007/s11214-012-9873-5

Volatiles in the Martian regolith
journal, October 1979


Geochemistry of the Bagnold dune field as observed by ChemCam and comparison with other aeolian deposits at Gale Crater: ChemCam Results From Bagnold Dunes, Mars
journal, October 2017

  • Cousin, Agnes; Dehouck, Erwin; Meslin, Pierre-Yves
  • Journal of Geophysical Research: Planets, Vol. 122, Issue 10
  • DOI: 10.1002/2017JE005261

Observations of an aeolian landscape: From surface to orbit in Gale Crater
journal, December 2016


Constraints on abundance, composition, and nature of X-ray amorphous components of soils and rocks at Gale crater, Mars: X-ray amorphous components at Gale
journal, December 2014

  • Dehouck, Erwin; McLennan, Scott M.; Meslin, Pierre-Yves
  • Journal of Geophysical Research: Planets, Vol. 119, Issue 12
  • DOI: 10.1002/2014JE004716

Shaler: in situ analysis of a fluvial sedimentary deposit on Mars
journal, June 2017

  • Edgar, Lauren A.; Gupta, Sanjeev; Rubin, David M.
  • Sedimentology, Vol. 65, Issue 1
  • DOI: 10.1111/sed.12370

New views of Mars eolian activity, materials, and surface properties: Three vignettes from the Mars Global Surveyor Mars Orbiter Camera
journal, January 2000

  • Edgett, Kenneth S.; Malin, Michael C.
  • Journal of Geophysical Research: Planets, Vol. 105, Issue E1
  • DOI: 10.1029/1999JE001152

Curiosity’s Mars Hand Lens Imager (MAHLI) Investigation
journal, July 2012

  • Edgett, Kenneth S.; Yingst, R. Aileen; Ravine, Michael A.
  • Space Science Reviews, Vol. 170, Issue 1-4
  • DOI: 10.1007/s11214-012-9910-4

Sedimentary processes of the Bagnold Dunes: Implications for the eolian rock record of Mars: Bagnold Dune Field Sedimentary Processes
journal, December 2017

  • Ewing, R. C.; Lapotre, M. G. A.; Lewis, K. W.
  • Journal of Geophysical Research: Planets, Vol. 122, Issue 12
  • DOI: 10.1002/2017JE005324

Global distribution of near-surface hydrogen on Mars
journal, January 2004


The stratigraphy and evolution of lower Mount Sharp from spectral, morphological, and thermophysical orbital data sets: Stratigraphy and Evolution of Mount Sharp
journal, September 2016

  • Fraeman, A. A.; Ehlmann, B. L.; Arvidson, R. E.
  • Journal of Geophysical Research: Planets, Vol. 121, Issue 9
  • DOI: 10.1002/2016JE005095

Alpha Particle X-Ray Spectrometer (APXS): Results from Gusev crater and calibration report: APXS RESULTS FROM GUSEV CRATER
journal, January 2006

  • Gellert, R.; Rieder, R.; Brückner, J.
  • Journal of Geophysical Research: Planets, Vol. 111, Issue E2
  • DOI: 10.1029/2005JE002555

Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust
journal, July 2005

  • Goetz, Walter; Bertelsen, Preben; Binau, Charlotte S.
  • Nature, Vol. 436, Issue 7047
  • DOI: 10.1038/nature03807

The timing of alluvial activity in Gale crater, Mars
journal, February 2014

  • Grant, John A.; Wilson, Sharon A.; Mangold, Nicolas
  • Geophysical Research Letters, Vol. 41, Issue 4
  • DOI: 10.1002/2013GL058909

A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars
journal, December 2013


Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars
journal, October 2015


Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars
journal, November 2005

  • Grotzinger, J. P.; Arvidson, R. E.; Bell, J. F.
  • Earth and Planetary Science Letters, Vol. 240, Issue 1
  • DOI: 10.1016/j.epsl.2005.09.039

Mineralogy of Martian atmospheric dust inferred from thermal infrared spectra of aerosols
journal, January 2005

  • Hamilton, Victoria E.; McSween, Harry Y.; Hapke, Bruce
  • Journal of Geophysical Research, Vol. 110, Issue E12
  • DOI: 10.1029/2005JE002501

Athena Microscopic Imager investigation: ATHENA MICROSCOPIC IMAGER INVESTIGATION
journal, November 2003

  • Herkenhoff, K. E.; Squyres, S. W.; Bell, J. F.
  • Journal of Geophysical Research: Planets, Vol. 108, Issue E12
  • DOI: 10.1029/2003JE002076

Aeolian processes and dune morphology in Gale Crater
journal, November 2010


High altitude infrared spectroscopic evidence for bound water on Mars
journal, March 1973


Spatial grain size sorting in eolian ripples and estimation of wind conditions on planetary surfaces: Application to Meridiani Planum, Mars: GRAIN SIZE SORTING AND WIND ESTIMATION
journal, May 2006

  • Jerolmack, Douglas J.; Mohrig, David; Grotzinger, John P.
  • Journal of Geophysical Research: Planets, Vol. 111, Issue E12
  • DOI: 10.1029/2005JE002544

ChemCam passive reflectance spectroscopy of surface materials at the Curiosity landing site, Mars
journal, March 2015


Visible/near-infrared spectral diversity from in situ observations of the Bagnold Dune Field sands in Gale Crater, Mars: VIS/NIR SPECTRA OF BAGNOLD SANDS
journal, December 2017

  • Johnson, Jeffrey R.; Achilles, Cherie; Bell, James F.
  • Journal of Geophysical Research: Planets, Vol. 122, Issue 12
  • DOI: 10.1002/2016JE005187

Hydration state of the Martian surface as seen by Mars Express OMEGA: 1. Analysis of the 3 μ m hydration feature : HYDRATION STATE OF THE MARTIAN SURFACE, 1
journal, August 2007

  • Jouglet, D.; Poulet, F.; Milliken, R. E.
  • Journal of Geophysical Research: Planets, Vol. 112, Issue E8
  • DOI: 10.1029/2006JE002846

Lunar Soil: An Engineering Term
journal, September 1968


Large wind ripples on Mars: A record of atmospheric evolution
journal, June 2016


Identifying and quantifying mineral abundance through VSWIR microimaging spectroscopy: A comparison to XRD and SEM
conference, August 2016

  • Leask, Ellen K.; Ehlmann, Bethany L.
  • 2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)
  • DOI: 10.1109/WHISPERS.2016.8071774

Sequence of infilling events in Gale Crater, Mars: Results from morphology, stratigraphy, and mineralogy: SEDIMENTARY INFILLING IN GALE CRATER
journal, December 2013

  • Deit, Laetitia Le; Hauber, Ernst; Fueten, Frank
  • Journal of Geophysical Research: Planets, Vol. 118, Issue 12
  • DOI: 10.1002/2012JE004322

The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on board Curiosity : Potassic Sedimentary Rocks, Gale Crater
journal, May 2016

  • Le Deit, L.; Mangold, N.; Forni, O.
  • Journal of Geophysical Research: Planets, Vol. 121, Issue 5
  • DOI: 10.1002/2015JE004987

Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover
journal, September 2013


The Sample Analysis at Mars Investigation and Instrument Suite
journal, April 2012

  • Mahaffy, Paul R.; Webster, Christopher R.; Cabane, Michel
  • Space Science Reviews, Vol. 170, Issue 1-4
  • DOI: 10.1007/s11214-012-9879-z

Sedimentary Rocks of Early Mars
journal, December 2000


The Mars Science Laboratory (MSL) Mast cameras and Descent imager: Investigation and instrument descriptions: MSL Mastcam/MARDI Descriptions
journal, August 2017

  • Malin, Michal C.; Ravine, Michael A.; Caplinger, Michael A.
  • Earth and Space Science, Vol. 4, Issue 8
  • DOI: 10.1002/2016EA000252

Composition of conglomerates analyzed by the Curiosity rover: Implications for Gale Crater crust and sediment sources: CONGLOMERATES COMPOSITION AT GALE CRATER
journal, March 2016

  • Mangold, N.; Thompson, L. M.; Forni, O.
  • Journal of Geophysical Research: Planets, Vol. 121, Issue 3
  • DOI: 10.1002/2015JE004977

The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description
journal, July 2012


ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars
journal, January 2016

  • Maurice, S.; Clegg, S. M.; Wiens, R. C.
  • Journal of Analytical Atomic Spectrometry, Vol. 31, Issue 4
  • DOI: 10.1039/C5JA00417A

Origin of basaltic soils at Gusev crater, Mars, by aeolian modification of impact-generated sediment
journal, January 2011

  • McGlynn, Ian O.; Fedo, Christopher M.; McSween, Harry Y.
  • Journal of Geophysical Research, Vol. 116
  • DOI: 10.1029/2010JE003712

Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars
journal, December 2013


Determining the modal mineralogy of Martian soils
journal, January 2010

  • McSween, Harry Y.; McGlynn, Ian O.; Rogers, A. Deane
  • Journal of Geophysical Research, Vol. 115
  • DOI: 10.1029/2010JE003582

Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars
journal, September 2013


Hydration state of the Martian surface as seen by Mars Express OMEGA: 2. H 2 O content of the surface : HYDRATION STATE OF THE MARTIAN SURFACE
journal, August 2007

  • Milliken, Ralph E.; Mustard, John F.; Poulet, François
  • Journal of Geophysical Research: Planets, Vol. 112, Issue E8
  • DOI: 10.1029/2006JE002853

Wind-blown sandstones cemented by sulfate and clay minerals in Gale Crater, Mars
journal, February 2014

  • Milliken, R. E.; Ewing, R. C.; Fischer, W. W.
  • Geophysical Research Letters, Vol. 41, Issue 4
  • DOI: 10.1002/2013GL059097

Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater: STRATIGRAPHY OF GALE CRATER
journal, February 2010

  • Milliken, R. E.; Grotzinger, J. P.; Thomson, B. J.
  • Geophysical Research Letters, Vol. 37, Issue 4
  • DOI: 10.1029/2009GL041870

Geochemical properties of rocks and soils in Gusev Crater, Mars: Results of the Alpha Particle X-Ray Spectrometer from Cumberland Ridge to Home Plate
journal, January 2008

  • Ming, D. W.; Gellert, R.; Morris, R. V.
  • Journal of Geophysical Research, Vol. 113, Issue E12
  • DOI: 10.1029/2008JE003195

Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars
journal, December 2013


MAHLI at the Rocknest sand shadow: Science and science-enabling activities: MAHLI AT ROCKNEST
journal, November 2013

  • Minitti, M. E.; Kah, L. C.; Yingst, R. A.
  • Journal of Geophysical Research: Planets, Vol. 118, Issue 11
  • DOI: 10.1002/2013JE004426

Dynamic Albedo of Neutrons (DAN) Experiment Onboard NASA’s Mars Science Laboratory
journal, July 2012

  • Mitrofanov, I. G.; Litvak, M. L.; Varenikov, A. B.
  • Space Science Reviews, Vol. 170, Issue 1-4
  • DOI: 10.1007/s11214-012-9924-y

Water and chlorine content in the Martian soil along the first 1900 m of the Curiosity rover traverse as estimated by the DAN instrument
journal, July 2014

  • Mitrofanov, I. G.; Litvak, M. L.; Sanin, A. B.
  • Journal of Geophysical Research: Planets, Vol. 119, Issue 7
  • DOI: 10.1002/2013JE004553

Silicic volcanism on Mars evidenced by tridymite in high-SiO 2 sedimentary rock at Gale crater
journal, June 2016

  • Morris, Richard V.; Vaniman, David T.; Blake, David F.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 26
  • DOI: 10.1073/pnas.1607098113

Relationships between unit-cell parameters and composition for rock-forming minerals on Earth, Mars, and other extraterrestrial bodies
journal, June 2018

  • Morrison, Shaunna M.; Downs, Robert T.; Blake, David F.
  • American Mineralogist, Vol. 103, Issue 6
  • DOI: 10.2138/am-2018-6123

Crystal chemistry of martian minerals from Bradbury Landing through Naukluft Plateau, Gale crater, Mars
journal, June 2018

  • Morrison, Shaunna M.; Downs, Robert T.; Blake, David F.
  • American Mineralogist, Vol. 103, Issue 6
  • DOI: 10.2138/am-2018-6124

APXS-derived chemistry of the Bagnold dune sands: Comparisons with Gale Crater soils and the global Martian average: APXS-Bagnold Sands and Gale Soils
journal, December 2017

  • O'Connell-Cooper, C. D.; Spray, J. G.; Thompson, L. M.
  • Journal of Geophysical Research: Planets, Vol. 122, Issue 12
  • DOI: 10.1002/2017JE005268

Surficial properties in Gale Crater, Mars, from Mars Odyssey THEMIS data
journal, February 2004


Surface mineralogy of Martian low-albedo regions from MGS-TES data: Implications for upper crustal evolution and surface alteration
journal, January 2007

  • Rogers, A. Deanne; Christensen, Philip R.
  • Journal of Geophysical Research, Vol. 112, Issue E1
  • DOI: 10.1029/2006JE002727

Mineralogical composition of sands in Meridiani Planum determined from Mars Exploration Rover data and comparison to orbital measurements
journal, January 2008

  • Rogers, A. D.; Aharonson, O.
  • Journal of Geophysical Research, Vol. 113, Issue E6
  • DOI: 10.1029/2007JE002995

Mineralogical characterization of Mars Science Laboratory candidate landing sites from THEMIS and TES data
journal, October 2009


Compositional provinces of Mars from statistical analyses of TES, GRS, OMEGA and CRISM data: Mars' compositional provinces from TES
journal, January 2015

  • Rogers, A. Deanne; Hamilton, Victoria E.
  • Journal of Geophysical Research: Planets, Vol. 120, Issue 1
  • DOI: 10.1002/2014JE004690

Spectral evidence for zeolite in the dust on Mars
journal, March 2004


Data processing of the active neutron experiment DAN for a Martian regolith investigation
journal, July 2015

  • Sanin, A. B.; Mitrofanov, I. G.; Litvak, M. L.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 789
  • DOI: 10.1016/j.nima.2015.03.085

Igneous mineralogy at Bradbury Rise: The first ChemCam campaign at Gale crater: IGNEOUS MINERALOGY AT BRADBURY RISE
journal, January 2014

  • Sautter, V.; Fabre, C.; Forni, O.
  • Journal of Geophysical Research: Planets, Vol. 119, Issue 1
  • DOI: 10.1002/2013JE004472

Mineralogy of the MSL Curiosity landing site in Gale crater as observed by MRO/CRISM
journal, July 2014

  • Seelos, Kimberly D.; Seelos, Frank P.; Viviano-Beck, Christina E.
  • Geophysical Research Letters, Vol. 41, Issue 14
  • DOI: 10.1002/2014GL060310

Sorting out compositional trends in sedimentary rocks of the Bradbury group (Aeolis Palus), Gale crater, Mars: Bradbury Group Compositional Trends in Gale Crater
journal, February 2017

  • Siebach, K. L.; Baker, M. B.; Grotzinger, J. P.
  • Journal of Geophysical Research: Planets, Vol. 122, Issue 2
  • DOI: 10.1002/2016JE005195

Pervasive aeolian activity along rover Curiosity's traverse in Gale Crater, Mars
journal, February 2013

  • Silvestro, S.; Vaz, D. A.; Ewing, R. C.
  • Geology, Vol. 41, Issue 4
  • DOI: 10.1130/G34162.1

Dune-like dynamic of Martian Aeolian large ripples: LONGITUDINAL LARGE RIPPLES ON MARS
journal, August 2016

  • Silvestro, S.; Vaz, D. A.; Yizhaq, H.
  • Geophysical Research Letters, Vol. 43, Issue 16
  • DOI: 10.1002/2016GL070014

H 2 O at the Phoenix Landing Site
journal, July 2009


Soils of Eagle Crater and Meridiani Planum at the Opportunity Rover Landing Site
journal, December 2004


The Petrochemistry of Jake_M: A Martian Mugearite
journal, September 2013


Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site
journal, July 2005

  • Sullivan, R.; Banfield, D.; Bell, J. F.
  • Nature, Vol. 436, Issue 7047
  • DOI: 10.1038/nature03641

Wind-driven particle mobility on Mars: Insights from Mars Exploration Rover observations at “El Dorado” and surroundings at Gusev Crater
journal, January 2008

  • Sullivan, R.; Arvidson, R.; Bell, J. F.
  • Journal of Geophysical Research, Vol. 113, Issue E6
  • DOI: 10.1029/2008JE003101

Cohesions, friction angles, and other physical properties of Martian regolith from Mars Exploration Rover wheel trenches and wheel scuffs
journal, January 2011

  • Sullivan, R.; Anderson, R.; Biesiadecki, J.
  • Journal of Geophysical Research, Vol. 116, Issue E2
  • DOI: 10.1029/2010JE003625

Aeolian saltation on Mars at low wind speeds: Low Speed Aeolian Saltation on Mars
journal, October 2017

  • Sullivan, R.; Kok, J. F.
  • Journal of Geophysical Research: Planets, Vol. 122, Issue 10
  • DOI: 10.1002/2017JE005275

The color of the Martian sky and its influence on the illumination of the Martian surface
journal, April 1999

  • Thomas, N.; Markiewicz, W. J.; Sablotny, R. M.
  • Journal of Geophysical Research: Planets, Vol. 104, Issue E4
  • DOI: 10.1029/98JE02556

Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data
journal, August 2011


Potassium-rich sandstones within the Gale impact crater, Mars: The APXS perspective: Potassium-Rich Sandstones on Mars
journal, October 2016

  • Thompson, L. M.; Schmidt, M. E.; Spray, J. G.
  • Journal of Geophysical Research: Planets, Vol. 121, Issue 10
  • DOI: 10.1002/2016JE005055

Dark aeolian sediments in Martian craters: Composition and sources
journal, January 2011

  • Tirsch, D.; Jaumann, R.; Pacifici, A.
  • Journal of Geophysical Research, Vol. 116, Issue E3
  • DOI: 10.1029/2009JE003562

Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X-ray diffraction of the Windjana sample (Kimberley area, Gale Crater): CHEMIN: WINDJANA
journal, January 2016

  • Treiman, Allan H.; Bish, David L.; Vaniman, David T.
  • Journal of Geophysical Research: Planets, Vol. 121, Issue 1
  • DOI: 10.1002/2015JE004932

Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars
journal, December 2013


Visible to near-infrared MSL/Mastcam multispectral imaging: Initial results from select high-interest science targets within Gale Crater, Mars
journal, June 2017

  • Wellington, Danika F.; Bell, James F.; Johnson, Jeffrey R.
  • American Mineralogist, Vol. 102, Issue 6
  • DOI: 10.2138/am-2017-5760CCBY

Soil grain analyses at Meridiani Planum, Mars: SOIL GRAIN ANALYSES AT MERIDIANI PLANUM
journal, September 2006

  • Weitz, C. M.; Anderson, R. C.; Bell, J. F.
  • Journal of Geophysical Research: Planets, Vol. 111, Issue E12
  • DOI: 10.1029/2005JE002541

The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests
journal, June 2012

  • Wiens, Roger C.; Maurice, Sylvestre; Barraclough, Bruce
  • Space Science Reviews, Vol. 170, Issue 1-4
  • DOI: 10.1007/s11214-012-9902-4

Martian Fluvial Conglomerates at Gale Crater
journal, May 2013

  • Williams, R. M. E.; Grotzinger, J. P.; Dietrich, W. E.
  • Science, Vol. 340, Issue 6136
  • DOI: 10.1126/science.1237317

An integrated view of the chemistry and mineralogy of martian soils
journal, July 2005

  • Yen, Albert S.; Gellert, Ralf; Schröder, Christian
  • Nature, Vol. 436, Issue 7047
  • DOI: 10.1038/nature03637

Multiple stages of aqueous alteration along fractures in mudstone and sandstone strata in Gale Crater, Mars
journal, August 2017


Curiosity’s robotic arm-mounted Mars Hand Lens Imager (MAHLI): Characterization and calibration status
null, January 2015


    Works referencing / citing this record:

    Geology and Physical Properties Investigations by the InSight Lander
    journal, June 2018


    Geology and Physical Properties Investigations by the InSight Lander
    journal, June 2018