skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Selective mass enhancement close to the quantum critical point in BaFe 2(As 1-xP x) 2

Abstract

A quantum critical point (QCP) is currently being conjectured for the BaFe 2(As 1-xP x) 2 system at the critical value x c ≈ 0.3. In the proximity of a QCP, all thermodynamic and transport properties are expected to scale with a single characteristic energy, given by the quantum fluctuations. Such a universal behavior has not, however, been found in the superconducting upper critical field H c2. Here we report H c2 data for epitaxial thin films extracted from the electrical resistance measured in very high magnetic fields up to 67 Tesla. Using a multi-band analysis we find that H c2 is sensitive to the QCP, implying a significant charge carrier effective mass enhancement at the doping-induced QCP that is essentially band-dependent. Our results point to two qualitatively different groups of electrons in BaFe 2(As 1-xP x) 2. The first one (possibly associated to hot spots or whole Fermi sheets) has a strong mass enhancement at the QCP, and the second one is insensitive to the QCP. The observed duality could also be present in many other quantum critical systems.

Authors:
 [1]; ORCiD logo [2];  [1];  [2];  [2];  [3];  [4];  [5];  [6];  [7];  [7];  [8];  [8];  [9];  [10];  [10];  [10];  [10];  [2]
  1. Dresden Univ. of Technology (Germany); Leibniz Inst. for Solid State and Materials Research (IFW), Dresden (Germany)
  2. Leibniz Inst. for Solid State and Materials Research (IFW), Dresden (Germany)
  3. Lomonosov Moscow State Univ. (Russian Federation)
  4. Leibniz Inst. for Solid State and Materials Research (IFW), Dresden (Germany); Lomonosov Moscow State Univ. (Russian Federation)
  5. Leibniz Inst. for Solid State and Materials Research (IFW), Dresden (Germany); Karlsruhe Inst. of Technology (KIT) (Germany)
  6. Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany)
  7. Florida State Univ., Tallahassee, FL (United States)
  8. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  9. Tokyo Univ. of Agriculture and Technology (Japan)
  10. Nagoya Univ. (Japan)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC). Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1396128
Report Number(s):
LA-UR-17-23671
Journal ID: ISSN 2045-2322
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 7; Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; High Magnetic Field Science; Superconductor Pnictides quantum critical point

Citation Formats

Grinenko, V., Iida, K., Kurth, F., Efremov, D. V., Drechsler, S. -L., Cherniavskii, I., Morozov, I., Hänisch, J., Förster, T., Tarantini, C., Jaroszynski, J., Maiorov, B., Jaime, M., Yamamoto, A., Nakamura, I., Fujimoto, R., Hatano, T., Ikuta, H., and Hühne, R. Selective mass enhancement close to the quantum critical point in BaFe2(As1-xPx)2. United States: N. p., 2017. Web. doi:10.1038/s41598-017-04724-3.
Grinenko, V., Iida, K., Kurth, F., Efremov, D. V., Drechsler, S. -L., Cherniavskii, I., Morozov, I., Hänisch, J., Förster, T., Tarantini, C., Jaroszynski, J., Maiorov, B., Jaime, M., Yamamoto, A., Nakamura, I., Fujimoto, R., Hatano, T., Ikuta, H., & Hühne, R. Selective mass enhancement close to the quantum critical point in BaFe2(As1-xPx)2. United States. doi:10.1038/s41598-017-04724-3.
Grinenko, V., Iida, K., Kurth, F., Efremov, D. V., Drechsler, S. -L., Cherniavskii, I., Morozov, I., Hänisch, J., Förster, T., Tarantini, C., Jaroszynski, J., Maiorov, B., Jaime, M., Yamamoto, A., Nakamura, I., Fujimoto, R., Hatano, T., Ikuta, H., and Hühne, R. Tue . "Selective mass enhancement close to the quantum critical point in BaFe2(As1-xPx)2". United States. doi:10.1038/s41598-017-04724-3. https://www.osti.gov/servlets/purl/1396128.
@article{osti_1396128,
title = {Selective mass enhancement close to the quantum critical point in BaFe2(As1-xPx)2},
author = {Grinenko, V. and Iida, K. and Kurth, F. and Efremov, D. V. and Drechsler, S. -L. and Cherniavskii, I. and Morozov, I. and Hänisch, J. and Förster, T. and Tarantini, C. and Jaroszynski, J. and Maiorov, B. and Jaime, M. and Yamamoto, A. and Nakamura, I. and Fujimoto, R. and Hatano, T. and Ikuta, H. and Hühne, R.},
abstractNote = {A quantum critical point (QCP) is currently being conjectured for the BaFe2(As1-xPx)2 system at the critical value xc ≈ 0.3. In the proximity of a QCP, all thermodynamic and transport properties are expected to scale with a single characteristic energy, given by the quantum fluctuations. Such a universal behavior has not, however, been found in the superconducting upper critical field Hc2. Here we report Hc2 data for epitaxial thin films extracted from the electrical resistance measured in very high magnetic fields up to 67 Tesla. Using a multi-band analysis we find that Hc2 is sensitive to the QCP, implying a significant charge carrier effective mass enhancement at the doping-induced QCP that is essentially band-dependent. Our results point to two qualitatively different groups of electrons in BaFe2(As1-xPx)2. The first one (possibly associated to hot spots or whole Fermi sheets) has a strong mass enhancement at the QCP, and the second one is insensitive to the QCP. The observed duality could also be present in many other quantum critical systems.},
doi = {10.1038/s41598-017-04724-3},
journal = {Scientific Reports},
number = 1,
volume = 7,
place = {United States},
year = {2017},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A Sharp Peak of the Zero-Temperature Penetration Depth at Optimal Composition in BaFe2(As1-xPx)2
journal, June 2012


Enhancement of the London Penetration Depth in Pnictides at the Onset of Spin-Density-Wave Order under Superconducting Dome
journal, April 2013


Temperature and Purity Dependence of the Superconducting Critical Field, H c 2 . III. Electron Spin and Spin-Orbit Effects
journal, July 1966


Evolution from non-Fermi- to Fermi-liquid transport via isovalent doping in BaFe 2 ( As 1 x P x ) 2 superconductors
journal, May 2010


Charge- and spin-density waves in existing superconductors: competition between Cooper pairing and Peierls or excitonic instabilities
journal, September 2002


Strain induced superconductivity in the parent compound BaFe2As2
journal, December 2013

  • Engelmann, J.; Grinenko, V.; Chekhonin, P.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3877

A Quantum Critical Point Lying Beneath the Superconducting Dome in Iron Pnictides
journal, March 2014


Electronic reconstruction through the structural and magnetic transitions in detwinned NaFeAs
journal, July 2012


Effect of Magnetic Criticality and Fermi-Surface Topology on the Magnetic Penetration Depth
journal, October 2013


Hall-plot of the phase diagram for Ba(Fe1−xCox)2As2
journal, June 2016

  • Iida, Kazumasa; Grinenko, Vadim; Kurth, Fritz
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep28390

Universality of the Dispersive Spin-Resonance Mode in Superconducting BaFe 2 As 2
journal, October 2013


Scaling between magnetic field and temperature in the high-temperature superconductor BaFe2(As1−xPx)2
journal, May 2016

  • Hayes, Ian M.; McDonald, Ross D.; Breznay, Nicholas P.
  • Nature Physics, Vol. 12, Issue 10
  • DOI: 10.1038/nphys3773

Quasiparticle Mass Enhancement Close to the Quantum Critical Point in BaFe 2 ( As 1 x P x ) 2
journal, June 2013


Local characterization of superconductivity in BaF e 2 ( A s 1 x P x ) 2
journal, February 2015


Strong Tc dependence for strained epitaxial Ba(Fe1−xCox)2As2 thin films
journal, November 2009

  • Iida, K.; Hänisch, J.; Hühne, R.
  • Applied Physics Letters, Vol. 95, Issue 19
  • DOI: 10.1063/1.3259922

Lattice Effects on Nematic Quantum Criticality in Metals
journal, June 2017


Gradual suppression of antiferromagnetism in BaFe 2 (As 1 x P x ) 2 : Zero-temperature evidence for a quantum critical point
journal, May 2012


Quantum criticality in heavy-fermion metals
journal, March 2008

  • Gegenwart, Philipp; Si, Qimiao; Steglich, Frank
  • Nature Physics, Vol. 4, Issue 3
  • DOI: 10.1038/nphys892

Transport near a quantum critical point in BaFe2(As1−xPx)2
journal, January 2014

  • Analytis, James G.; Kuo, H-H.; McDonald, Ross D.
  • Nature Physics, Vol. 10, Issue 3
  • DOI: 10.1038/nphys2869

Evolution of the Fermi Surface of BaFe 2 ( As 1 x P x ) 2 on Entering the Superconducting Dome
journal, February 2010


Iron-based superconductors at high magnetic fields
journal, September 2011


The Quantum Critical Point in CeRhIn 5 : A Resistivity Study
journal, November 2008

  • Knebel, Georg; Aoki, Dai; Brison, Jean-Pascal
  • Journal of the Physical Society of Japan, Vol. 77, Issue 11
  • DOI: 10.1143/JPSJ.77.114704

Unconventional Superconductivity and Antiferromagnetic Quantum Critical Behavior in the Isovalent-Doped BaFe 2 ( As 1 x P x ) 2
journal, September 2010


Anomalous critical fields in quantum critical superconductors
journal, December 2014

  • Putzke, C.; Walmsley, P.; Fletcher, J. D.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6679

Phase transition beneath the superconducting dome in BaFe 2 ( As 1 x P x ) 2
journal, August 2015


Gap symmetry and structure of Fe-based superconductors
journal, October 2011


A common thread: The pairing interaction for unconventional superconductors
journal, October 2012


The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides
journal, October 2010


Unusually high critical current of clean P-doped BaFe 2 As 2 single crystalline thin film
journal, February 2015

  • Kurth, F.; Tarantini, C.; Grinenko, V.
  • Applied Physics Letters, Vol. 106, Issue 7
  • DOI: 10.1063/1.4908257