skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Polymer encapsulated microcavity optomechanical magnetometer

Abstract

We demonstrate a magnetometer using polymer encapsulated whispering-gallery-mode microcavity actuated by a micro-magnet. The magnetic field induces force on the micro-magnet causing deformation in the polymer around the microcavity. Subsequently the microcavity detects the change in the refractive index of the polymer resulted from the deformation. This magnetometer works in the frequency range of hertz-to-kilohertz range and achieves a sensitivity of 880 pT/Hz1/2 at 200 Hz in a micro-scale sensor volume. Polymer encapsulation of the magnetometer and fiber optical connection ensures environmental robustness and practicality of the sensor.

Authors:
 [1];  [2];  [1];  [2]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Washington Univ., St. Louis, MO (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1396126
Report Number(s):
LA-UR-17-22375
Journal ID: ISSN 2045-2322
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 7; Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; Atomic and Nuclear Physics

Citation Formats

Zhu, Jiangang, Zhao, Guangming, Savukov, Igor, and Yang, Lan. Polymer encapsulated microcavity optomechanical magnetometer. United States: N. p., 2017. Web. doi:10.1038/s41598-017-08875-1.
Zhu, Jiangang, Zhao, Guangming, Savukov, Igor, & Yang, Lan. Polymer encapsulated microcavity optomechanical magnetometer. United States. doi:10.1038/s41598-017-08875-1.
Zhu, Jiangang, Zhao, Guangming, Savukov, Igor, and Yang, Lan. Mon . "Polymer encapsulated microcavity optomechanical magnetometer". United States. doi:10.1038/s41598-017-08875-1. https://www.osti.gov/servlets/purl/1396126.
@article{osti_1396126,
title = {Polymer encapsulated microcavity optomechanical magnetometer},
author = {Zhu, Jiangang and Zhao, Guangming and Savukov, Igor and Yang, Lan},
abstractNote = {We demonstrate a magnetometer using polymer encapsulated whispering-gallery-mode microcavity actuated by a micro-magnet. The magnetic field induces force on the micro-magnet causing deformation in the polymer around the microcavity. Subsequently the microcavity detects the change in the refractive index of the polymer resulted from the deformation. This magnetometer works in the frequency range of hertz-to-kilohertz range and achieves a sensitivity of 880 pT/Hz1/2 at 200 Hz in a micro-scale sensor volume. Polymer encapsulation of the magnetometer and fiber optical connection ensures environmental robustness and practicality of the sensor.},
doi = {10.1038/s41598-017-08875-1},
journal = {Scientific Reports},
number = 1,
volume = 7,
place = {United States},
year = {2017},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Scanning Hall probe microscopy
journal, October 1992

  • Chang, A. M.; Hallen, H. D.; Harriott, L.
  • Applied Physics Letters, Vol. 61, Issue 16
  • DOI: 10.1063/1.108334

Ultra-high-Q toroid microcavity on a chip
journal, February 2003

  • Armani, D. K.; Kippenberg, T. J.; Spillane, S. M.
  • Nature, Vol. 421, Issue 6926, p. 925-928
  • DOI: 10.1038/nature01371

On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator
journal, December 2009


Dynamical thermal behavior and thermal self-stability of microcavities
journal, January 2004


Cavity Optomechanical Magnetometer
journal, March 2012