DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Application of Pulse Radiolysis to Mechanistic Investigations of Catalysis Relevant to Artificial Photosynthesis

Abstract

Taking inspiration from natural photosystems, the goal of artificial photosynthesis is to harness solar energy to convert abundant materials, such as CO2 and H2O, into solar fuels. Catalysts are required to ensure that the necessary redox half-reactions proceed in the most energy-efficient manner. It is thus critical to gain a detailed mechanistic understanding of these catalytic reactions in order to develop new and improved catalysts. Many of the key catalytic intermediates are short-lived transient species, requiring time-resolved spectroscopic techniques for their observation. The two main methods for rapidly generating such species on the sub-microsecond timescale are laser flash photolysis and pulse radiolysis. These methods complement one another, and both can provide important spectroscopic and kinetic information. However, pulse radiolysis proves to be superior in systems with significant spectroscopic overlap between photosensitizer and other species present during the reaction. In this paper, we review the pulse radiolysis technique and how it has been applied to mechanistic investigations of half-reactions relevant to artificial photosynthesis.

Authors:
 [1];  [1];  [1]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1395945
Alternate Identifier(s):
OSTI ID: 1407812
Report Number(s):
BNL-114372-2017-JA
Journal ID: ISSN 1864-5631; R&D Project: CO026; KC0304030
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
ChemSusChem
Additional Journal Information:
Journal Volume: 10; Journal Issue: 22; Journal ID: ISSN 1864-5631
Publisher:
ChemPubSoc Europe
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; artificial photosynthesis; pulse radiolysis; mechanism; fuel generation

Citation Formats

Fujita, Etsuko, Grills, David C., and Polyansky, Dmitry E. Application of Pulse Radiolysis to Mechanistic Investigations of Catalysis Relevant to Artificial Photosynthesis. United States: N. p., 2017. Web. doi:10.1002/cssc.201701559.
Fujita, Etsuko, Grills, David C., & Polyansky, Dmitry E. Application of Pulse Radiolysis to Mechanistic Investigations of Catalysis Relevant to Artificial Photosynthesis. United States. https://doi.org/10.1002/cssc.201701559
Fujita, Etsuko, Grills, David C., and Polyansky, Dmitry E. Tue . "Application of Pulse Radiolysis to Mechanistic Investigations of Catalysis Relevant to Artificial Photosynthesis". United States. https://doi.org/10.1002/cssc.201701559. https://www.osti.gov/servlets/purl/1395945.
@article{osti_1395945,
title = {Application of Pulse Radiolysis to Mechanistic Investigations of Catalysis Relevant to Artificial Photosynthesis},
author = {Fujita, Etsuko and Grills, David C. and Polyansky, Dmitry E.},
abstractNote = {Taking inspiration from natural photosystems, the goal of artificial photosynthesis is to harness solar energy to convert abundant materials, such as CO2 and H2O, into solar fuels. Catalysts are required to ensure that the necessary redox half-reactions proceed in the most energy-efficient manner. It is thus critical to gain a detailed mechanistic understanding of these catalytic reactions in order to develop new and improved catalysts. Many of the key catalytic intermediates are short-lived transient species, requiring time-resolved spectroscopic techniques for their observation. The two main methods for rapidly generating such species on the sub-microsecond timescale are laser flash photolysis and pulse radiolysis. These methods complement one another, and both can provide important spectroscopic and kinetic information. However, pulse radiolysis proves to be superior in systems with significant spectroscopic overlap between photosensitizer and other species present during the reaction. In this paper, we review the pulse radiolysis technique and how it has been applied to mechanistic investigations of half-reactions relevant to artificial photosynthesis.},
doi = {10.1002/cssc.201701559},
journal = {ChemSusChem},
number = 22,
volume = 10,
place = {United States},
year = {Tue Sep 12 00:00:00 EDT 2017},
month = {Tue Sep 12 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Application of Pulse Radiolysis to Mechanistic Investigations of Water Oxidation Catalysis: Mechanistic Investigations of Water Oxidation Catalysis
journal, September 2013

  • Polyansky, Dmitry E.; Hurst, James K.; Lymar, Sergei V.
  • European Journal of Inorganic Chemistry, Vol. 2014, Issue 4
  • DOI: 10.1002/ejic.201300753

Formation and decay of zinc tetrakis (N-methyl-3-pyridyl)porphine π-radical cation in water
journal, January 1986

  • Richoux, Marie-Claude; Neta, Pedatsur; Christensen, Paul A.
  • J. Chem. Soc., Faraday Trans. 2, Vol. 82, Issue 2
  • DOI: 10.1039/F29868200235

Photochemical and Radiolytic Production of an Organic Hydride Donor with a RuII Complex Containing an NAD+ Model Ligand
journal, May 2007

  • Polyansky, Dmitry; Cabelli, Diane; Muckerman, James T.
  • Angewandte Chemie, Vol. 119, Issue 22
  • DOI: 10.1002/ange.200700304

Polyelectrolyte-stabilized metal oxide hydrosols as catalysts for the photooxidation of water by zinc porphyrins
journal, July 1988

  • Nahor, Gad S.; Mosseri, S.; Neta, P.
  • The Journal of Physical Chemistry, Vol. 92, Issue 15
  • DOI: 10.1021/j100326a049

Mechanism of Hydride Donor Generation Using a Ru(II) Complex Containing an NAD + Model Ligand: Pulse and Steady-State Radiolysis Studies
journal, May 2008

  • Polyansky, Dmitry E.; Cabelli, Diane; Muckerman, James T.
  • Inorganic Chemistry, Vol. 47, Issue 10
  • DOI: 10.1021/ic702139n

A New Family of Ru Complexes for Water Oxidation
journal, September 2005

  • Zong, Ruifa; Thummel, Randolph P.
  • Journal of the American Chemical Society, Vol. 127, Issue 37
  • DOI: 10.1021/ja054791m

Binding of carbon dioxide to cobalt and nickel tetra-aza macrocycles
journal, January 1986

  • Gangi, Dorothea A.; Durand, Richard R.
  • Journal of the Chemical Society, Chemical Communications, Issue 9
  • DOI: 10.1039/c39860000697

Reduction of Cobalt and Iron Phthalocyanines and the Role of the Reduced Species in Catalyzed Photoreduction of CO 2
journal, December 2000

  • Grodkowski, J.; Dhanasekaran, T.; Neta, P.
  • The Journal of Physical Chemistry A, Vol. 104, Issue 48
  • DOI: 10.1021/jp002709y

Iron Porphyrin-Catalyzed Reduction of CO 2 . Photochemical and Radiation Chemical Studies
journal, January 1997

  • Grodkowski, J.; Behar, D.; Neta, P.
  • The Journal of Physical Chemistry A, Vol. 101, Issue 3
  • DOI: 10.1021/jp9628139

Direct XANES Evidence for Charge Transfer in Co−CO 2 Complexes
journal, May 1997

  • Fujita, Etsuko; Furenlid, Lars R.; Renner, Mark W.
  • Journal of the American Chemical Society, Vol. 119, Issue 19
  • DOI: 10.1021/ja970151a

Tetraaza-macrocyclic cobalt(II) and nickel(II) complexes as electron-transfer agents in the photo(electro)chemical and electrochemical reduction of carbon dioxide
journal, January 1984

  • Tinnemans, A. H. A.; Koster, T. P. M.; Thewissen, D. H. M. W.
  • Recueil des Travaux Chimiques des Pays-Bas, Vol. 103, Issue 10
  • DOI: 10.1002/recl.19841031004

Reversible Hydride Generation and Release from the Ligand of [Ru(pbn)(bpy)2](PF6)2 Driven by a pbn-Localized Redox Reaction
journal, September 2005


Catalysis of the electrochemical reduction of carbon dioxide
journal, January 2013

  • Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel
  • Chem. Soc. Rev., Vol. 42, Issue 6
  • DOI: 10.1039/C2CS35360A

Mechanistic Information from Pressure Acceleration of Hydride Formation via Proton Binding to a Cobalt(I) Macrocycle
journal, March 2002

  • Fujita, Etsuko; Wishart, James F.; van Eldik, Rudi
  • Inorganic Chemistry, Vol. 41, Issue 6
  • DOI: 10.1021/ic011109q

Syntheses and Redox Properties of Bis(hydroxoruthenium) Complexes with Quinone and Bipyridine Ligands. Water-Oxidation Catalysis
journal, January 2001

  • Wada, Tohru; Tsuge, Kiyoshi; Tanaka, Koji
  • Inorganic Chemistry, Vol. 40, Issue 2
  • DOI: 10.1021/ic000552i

Carbon dioxide activation by cobalt(I) macrocycles: factors affecting carbon dioxide and carbon monoxide binding
journal, January 1991

  • Fujita, Etsuko; Creutz, Carol; Sutin, Norman
  • Journal of the American Chemical Society, Vol. 113, Issue 1
  • DOI: 10.1021/ja00001a048

Metal oxides as heterogeneous catalysts for oxygen evolution under photochemical conditions
journal, January 1988

  • Harriman, Anthony; Pickering, Ingrid J.; Thomas, John M.
  • Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, Vol. 84, Issue 8
  • DOI: 10.1039/f19888402795

Carbon dioxide activation by cobalt macrocycles: evidence of hydrogen bonding between bound CO2 and the macrocycle in solution
journal, June 1993

  • Fujita, Etsuko; Creutz, Carol; Sutin, Norman
  • Inorganic Chemistry, Vol. 32, Issue 12
  • DOI: 10.1021/ic00064a015

p -Terphenyl-Sensitized Photoreduction of CO 2 with Cobalt and Iron Porphyrins. Interaction between CO and Reduced Metalloporphyrins
journal, September 1999

  • Dhanasekaran, T.; Grodkowski, J.; Neta, P.
  • The Journal of Physical Chemistry A, Vol. 103, Issue 38
  • DOI: 10.1021/jp991423u

Optical spectra and reactivities of radical anions of 4-nitrobenzyl compounds produced by pulse radiolysis of acetonitrile solutions
journal, January 1974

  • Burrows, H. D.; Kosower, Edward M.
  • The Journal of Physical Chemistry, Vol. 78, Issue 2
  • DOI: 10.1021/j100595a006

Steric effect for proton, hydrogen-atom, and hydride transfer reactions with geometric isomers of NADH–model ruthenium complexes
journal, January 2012

  • Cohen, Brian W.; Polyansky, Dmitry E.; Achord, Patrick
  • Faraday Discuss., Vol. 155
  • DOI: 10.1039/C1FD00094B

The reactivity of cobalt(I) complexes containing unsaturated macrocyclic ligands in aqueous solution
journal, January 1976

  • Tait, A. Martin; Hoffman, Morton Z.; Hayon, E.
  • Journal of the American Chemical Society, Vol. 98, Issue 1
  • DOI: 10.1021/ja00417a015

Decay of high-valent manganese porphyrins in aqueous solution and catalysed formation of oxygen
journal, January 1986

  • Harriman, Anthony; Christensen, Paul A.; Porter, George
  • Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, Vol. 82, Issue 10
  • DOI: 10.1039/f19868203215

A review of iron and cobalt porphyrins, phthalocyanines and related complexes for electrochemical and photochemical reduction of carbon dioxide
journal, January 2015

  • Manbeck, Gerald F.; Fujita, Etsuko
  • Journal of Porphyrins and Phthalocyanines, Vol. 19, Issue 01-03
  • DOI: 10.1142/S1088424615300013

Reaction of tris(bipyridine)ruthenium(III) with hydroxide and its application in a solar energy storage system
journal, August 1975

  • Creutz, C.; Sutin, N.
  • Proceedings of the National Academy of Sciences, Vol. 72, Issue 8
  • DOI: 10.1073/pnas.72.8.2858

The Pulse Radiolysis of Deaerated Aqueous Carbonate Solutions. I. Transient Optical Spectrum and Mechanism. II. pK for OH Radicals 1
journal, July 1966

  • Weeks, James L.; Rabani, Joseph
  • The Journal of Physical Chemistry, Vol. 70, Issue 7
  • DOI: 10.1021/j100879a005

Artificial analogues of the oxygen-evolving complex in photosynthesis: the oxo-bridged ruthenium dimer L2(H2O)RuIII-O-RuIII(H2O)L2, L = 2,2'-bipyridyl-4,4'-dicarboxylate
journal, June 1989

  • Comte, Pascal; Nazeeruddin, Mohammad K.; Rotzinger, Francois P.
  • Journal of Molecular Catalysis, Vol. 52, Issue 1
  • DOI: 10.1016/0304-5102(89)80082-3

Oxidation of Water to Dioxygen by Intrazeolitic Ru(bpy)33+
journal, July 1995

  • Ledney, Michael; Dutta, Prabir K.
  • Journal of the American Chemical Society, Vol. 117, Issue 29
  • DOI: 10.1021/ja00134a013

Thermodynamics and kinetics of carbon dioxide binding to two stereoisomers of a cobalt(I) macrocycle in aqueous solution
journal, April 1991

  • Creutz, Carol; Schwarz, Harold A.; Wishart, James F.
  • Journal of the American Chemical Society, Vol. 113, Issue 9
  • DOI: 10.1021/ja00009a022

Iridium oxide hydrosols as catalysts for the decay of zinc porphyrin radical cations in water
journal, January 1988

  • Harriman, Anthony; Nahor, Gad S.; Mosseri, Shlomo
  • Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, Vol. 84, Issue 8
  • DOI: 10.1039/f19888402821

Pulse radiolysis of titanium(III) and other metal(III) ions in the presence of formic acid
journal, January 1973

  • Ellis, J. David; Green, Mark; Sykes, A. Geoffrey
  • Journal of the Chemical Society, Dalton Transactions, Issue 16
  • DOI: 10.1039/dt9730001724

Water Oxidation by a Ruthenium Complex with Noninnocent Quinone Ligands: Possible Formation of an O−O Bond at a Low Oxidation State of the Metal
journal, March 2008

  • Muckerman, James T.; Polyansky, Dmitry E.; Wada, Tohru
  • Inorganic Chemistry, Vol. 47, Issue 6
  • DOI: 10.1021/ic701892v

Reversible Hydride Generation and Release from the Ligand of [Ru(pbn)(bpy)2](PF6)2 Driven by a pbn-Localized Redox Reaction
journal, September 2005

  • Koizumi, Take-aki; Tanaka, Koji
  • Angewandte Chemie International Edition, Vol. 44, Issue 36
  • DOI: 10.1002/anie.200500760

Calculation of thermodynamic hydricities and the design of hydride donors for CO2 reduction
journal, July 2012

  • Muckerman, J. T.; Achord, P.; Creutz, C.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 39
  • DOI: 10.1073/pnas.1201026109

The Thermodynamics and Kinetics of CO2 and H+ Binding to Ni(cyclam)+ in Aqueous Solution
journal, May 1995

  • Kelly, Craig A.; Mulazzani, Quinto G.; Venturi, Margherita
  • Journal of the American Chemical Society, Vol. 117, Issue 17
  • DOI: 10.1021/ja00122a023

Mechanistic Studies of Hydrogen Evolution in Aqueous Solution Catalyzed by a Tertpyridine–Amine Cobalt Complex
journal, April 2015

  • Lewandowska-Andralojc, Anna; Baine, Teera; Zhao, Xuan
  • Inorganic Chemistry, Vol. 54, Issue 9
  • DOI: 10.1021/ic5031137

A pulse-radiolytic and photochemical study of the oxidation of water by zinc porphyrin π-radical cations
journal, January 1984

  • Christensen, Paul A.; Harriman, Anthony; Porter, George
  • J. Chem. Soc., Faraday Trans. 2, Vol. 80, Issue 11
  • DOI: 10.1039/F29848001451

Effects of redox potential, steric configuration, solvent, and alkali metal cations on the binding of carbon dioxide to cobalt(I) and nickel(I) macrocycles
journal, April 1990

  • Schmidt, Michael H.; Miskelly, Gordon M.; Lewis, Nathan S.
  • Journal of the American Chemical Society, Vol. 112, Issue 9
  • DOI: 10.1021/ja00165a027

Reactions of magnesium porphyrin radical cations in water. Disproportionation, oxygen production, and comparison with other metalloporphyrins
journal, July 1986

  • Harriman, Anthony; Neta, P.; Richoux, Marie Claude
  • The Journal of Physical Chemistry, Vol. 90, Issue 15
  • DOI: 10.1021/j100406a028

Photochemical Stereospecific Hydrogenation of a Ru Complex with an NAD + /NADH-Type Ligand
journal, December 2009

  • Fukushima, Takashi; Fujita, Etsuko; Muckerman, James T.
  • Inorganic Chemistry, Vol. 48, Issue 24
  • DOI: 10.1021/ic901935u

Cobalt Corrin Catalyzed Photoreduction of CO 2
journal, March 2000

  • Grodkowski, J.; Neta, P.
  • The Journal of Physical Chemistry A, Vol. 104, Issue 9
  • DOI: 10.1021/jp9939569

Characterization of Intermediary Redox States of the Water Oxidation Catalyst, [Ru(bpy) 2 (OH 2 )] 2 O 4+
journal, May 2009

  • Cape, Jonathan L.; Lymar, Sergei V.; Lightbody, Travis
  • Inorganic Chemistry, Vol. 48, Issue 10
  • DOI: 10.1021/ic9001219

Photochemical and Radiolytic Production of an Organic Hydride Donor with a RuII Complex Containing an NAD+ Model Ligand
journal, May 2007

  • Polyansky, Dmitry; Cabelli, Diane; Muckerman, James T.
  • Angewandte Chemie International Edition, Vol. 46, Issue 22
  • DOI: 10.1002/anie.200700304

Resonance stabilisation of zinc porphyrin π-radical cations
journal, January 1986

  • Neta, Pedatsur; Richoux, Marie-Claude; Harriman, Anthony
  • J. Chem. Soc., Faraday Trans. 2, Vol. 82, Issue 2
  • DOI: 10.1039/F29868200209

A Local Proton Source Enhances CO 2 Electroreduction to CO by a Molecular Fe Catalyst
journal, October 2012


Catalytic oxidation of water by an oxo-bridged ruthenium dimer
journal, July 1982

  • Gersten, Susan W.; Samuels, George J.; Meyer, Thomas J.
  • Journal of the American Chemical Society, Vol. 104, Issue 14
  • DOI: 10.1021/ja00378a053

A dissociative pathway for equilibration of a hydrido CoL(H)2+ complex with carbon dioxide and carbon monoxide. Ligand binding constants in the macrocyclic [14]-dienecobalt(I) system
journal, February 1989

  • Creutz, Carol; Schwarz, Harold A.; Wishart, James F.
  • Journal of the American Chemical Society, Vol. 111, Issue 3
  • DOI: 10.1021/ja00185a069

Kinetic Studies of the Reduction of [Co(dmgH) 2 (py)(Cl)] Revisited: Mechanisms, Products, and Implications
journal, June 2014

  • Kahnt, Axel; Peuntinger, Katrin; Dammann, Claudia
  • The Journal of Physical Chemistry A, Vol. 118, Issue 25
  • DOI: 10.1021/jp501947y

Mechanism of CO 2 and H + Reduction by Ni(cyclam) + in Aqueous Solution. A Pulse and Continuous Radiolysis Study
journal, April 1999

  • Kelly, Craig A.; Blinn, Elliott L.; Camaioni, Nadia
  • Inorganic Chemistry, Vol. 38, Issue 7
  • DOI: 10.1021/ic980902p

Turning on the Protonation-First Pathway for Electrocatalytic CO 2 Reduction by Manganese Bipyridyl Tricarbonyl Complexes
journal, February 2017

  • Ngo, Ken T.; McKinnon, Meaghan; Mahanti, Bani
  • Journal of the American Chemical Society, Vol. 139, Issue 7
  • DOI: 10.1021/jacs.6b08776

The radiation chemistry of metal ions in aqueous solution
journal, April 1977


Mechanistic and Kinetic Studies of Cobalt Macrocycles in a Photochemical CO2 Reduction System: Evidence of Co-CO2 Adducts as Intermediates
journal, June 1995

  • Ogata, Tomoyuki; Yanagida, Shozo; Brunschwig, Bruce S.
  • Journal of the American Chemical Society, Vol. 117, Issue 25
  • DOI: 10.1021/ja00130a009

Catalysis of the Electrochemical Reduction of Carbon Dioxide by Iron(0) Porphyrins:  Synergystic Effect of Weak Brönsted Acids
journal, January 1996

  • Bhugun, Iqbal; Lexa, Doris; Savéant, Jean-Michel
  • Journal of the American Chemical Society, Vol. 118, Issue 7
  • DOI: 10.1021/ja9534462

Formation and decomposition of iron-carbon .sigma.-bonds in the reaction of iron(II)-poly(amino carboxylate) complexes with CO2-free radicals. A pulse radiolysis study
journal, June 1988

  • Goldstein, Sara.; Czapski, Gidon.; Cohen, Haim.
  • Journal of the American Chemical Society, Vol. 110, Issue 12
  • DOI: 10.1021/ja00220a030

Water Oxidation with Mononuclear Ruthenium(II) Polypyridine Complexes Involving a Direct Ru IV ═O Pathway in Neutral and Alkaline Media
journal, July 2013

  • Badiei, Yosra M.; Polyansky, Dmitry E.; Muckerman, James T.
  • Inorganic Chemistry, Vol. 52, Issue 15
  • DOI: 10.1021/ic401023w

Metalloporphyrin-sensitized photooxidation of water to oxygen on the surface of colloidal iridium oxides: photochemical and pulse radiolytic studies
journal, August 1989

  • Nahor, G. S.; Neta, P.; Hambright, P.
  • The Journal of Physical Chemistry, Vol. 93, Issue 16
  • DOI: 10.1021/j100353a044

Cobalt Porphyrin Catalyzed Reduction of CO 2 . Radiation Chemical, Photochemical, and Electrochemical Studies
journal, April 1998

  • Behar, D.; Dhanasekaran, T.; Neta, P.
  • The Journal of Physical Chemistry A, Vol. 102, Issue 17
  • DOI: 10.1021/jp9807017

Water Oxidation by a Mononuclear Ruthenium Catalyst: Characterization of the Intermediates
journal, September 2011

  • Polyansky, Dmitry E.; Muckerman, James T.; Rochford, Jonathan
  • Journal of the American Chemical Society, Vol. 133, Issue 37
  • DOI: 10.1021/ja203249e

Mechanism of the Formation of a Mn-Based CO 2 Reduction Catalyst Revealed by Pulse Radiolysis with Time-Resolved Infrared Detection
journal, April 2014

  • Grills, David C.; Farrington, Jaime A.; Layne, Bobby H.
  • Journal of the American Chemical Society, Vol. 136, Issue 15
  • DOI: 10.1021/ja501051s

Zinc porphyrin π-radical cations in aqueous solution. Formation, spectra and decay kinetics
journal, January 1985

  • Neta, Pedatsur; Harriman, Anthony
  • J. Chem. Soc., Faraday Trans. 2, Vol. 81, Issue 1
  • DOI: 10.1039/F29858100123

Chemical Approaches to Artificial Photosynthesis. 2
journal, October 2005

  • Alstrum-Acevedo, James H.; Brennaman, M. Kyle; Meyer, Thomas J.
  • Inorganic Chemistry, Vol. 44, Issue 20
  • DOI: 10.1021/ic050904r

Development of nanosecond time-resolved infrared detection at the LEAF pulse radiolysis facility
journal, April 2015

  • Grills, David C.; Farrington, Jaime A.; Layne, Bobby H.
  • Review of Scientific Instruments, Vol. 86, Issue 4
  • DOI: 10.1063/1.4918728

Changes in the redox state of iridium oxide clusters and their relation to catalytic water oxidation: radiolytic and electrochemical studies
journal, January 1991

  • Nahor, G. S.; Hapiot, P.; Neta, P.
  • The Journal of Physical Chemistry, Vol. 95, Issue 2
  • DOI: 10.1021/j100155a024

Chemical Redox Agents for Organometallic Chemistry
journal, January 1996

  • Connelly, Neil G.; Geiger, William E.
  • Chemical Reviews, Vol. 96, Issue 2
  • DOI: 10.1021/cr940053x

Nickel(II)-cyclam: an extremely selective electrocatalyst for reduction of CO2 in water
journal, January 1984

  • Beley, Marc; Collin, Jean-Paul; Ruppert, Romain
  • Journal of the Chemical Society, Chemical Communications, Issue 19
  • DOI: 10.1039/c39840001315

Works referencing / citing this record:

Mechanistic Insights into Light-Activated Catalysis for Water Oxidation: Mechanistic Insights into Light-Activated Catalysis for Water Oxidation
journal, January 2019

  • Natali, Mirco; Nastasi, Francesco; Puntoriero, Fausto
  • European Journal of Inorganic Chemistry, Vol. 2019, Issue 15
  • DOI: 10.1002/ejic.201801236

Radiolytic formation of the carbon dioxide radical anion in acetonitrile revealed by transient IR spectroscopy
journal, January 2018

  • Grills, David C.; Lymar, Sergei V.
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 15
  • DOI: 10.1039/c8cp00977e

Mechanisms of catalytic reduction of CO 2 with heme and nonheme metal complexes
journal, January 2018

  • Fukuzumi, Shunichi; Lee, Yong-Min; Ahn, Hyun S.
  • Chemical Science, Vol. 9, Issue 28
  • DOI: 10.1039/c8sc02220h

Electrodeposition behavior of homoleptic transition metal acetonitrile complexes interrogated with piezoelectric gravimetry
journal, January 2020

  • Sconyers, David J.; Blakemore, James D.
  • The Analyst, Vol. 145, Issue 2
  • DOI: 10.1039/c9an01952a

Distinguishing deposition, corrosion, and stripping of transient heterogeneous materials during molecular electrocatalysis
journal, January 2019

  • Sconyers, David J.; Blakemore, James D.
  • Dalton Transactions, Vol. 48, Issue 19
  • DOI: 10.1039/c9dt00584f

Single-Electron Redox Chemistry on the [Cp*Rh] Platform Enabled by a Nitrated Bipyridyl Ligand
journal, November 2018


Mechanistic Insights into Light‐Activated Catalysis for Water Oxidation
journal, April 2019

  • Natali, Mirco; Nastasi, Francesco; Puntoriero, Fausto
  • European Journal of Inorganic Chemistry, Vol. 2019, Issue 15
  • DOI: 10.1002/ejic.201900365

Single-Electron Redox Chemistry on the [Cp*Rh] Platform Enabled by a Nitrated Bipyridyl Ligand
journal, November 2018