DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Turbulent Structure of the Arctic Summer Boundary Layer During The Arctic Summer Cloud‐Ocean Study

Abstract

Abstract The mostly ice covered Arctic Ocean is dominated by low‐level liquid‐ or mixed‐phase clouds. Turbulence within stratocumulus is primarily driven by cloud top cooling that induces convective instability. Using a suite of in situ and remote sensing instruments we characterize turbulent mixing in Arctic stratocumulus, and for the first time we estimate profiles of the gradient Richardson number at relatively high resolution in both time (10 min) and altitude (10 m). It is found that the mixing occurs both within the cloud, as expected, and by wind shear instability near the surface. About 75% of the time these two layers are separated by a stably stratified inversion at 100–200 m altitude. Exceptions are associated with low cloud bases that allow the cloud‐driven turbulence to reach the surface. The results imply that turbulent coupling between the surface and the cloud is sporadic or intermittent.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [3];  [1];  [4];  [1]; ORCiD logo [5];  [6];  [7]
  1. School of Earth and Environment University of Leeds Leeds UK
  2. Department of Meteorology and the Bert Bolin Centre for Climate Research Stockholm University Stockholm Sweden
  3. Cooperative Institute for Research in Environmental Science University of Colorado Boulder Boulder CO USA, NOAA‐ESRL Boulder CO USA
  4. CNRM‐GAME (Météo‐France and CNRS) Toulouse France
  5. Max Planck Institute for Meteorology Hamburg Germany
  6. Swedish Meteorological and Hydrological Institute Norrköping Sweden
  7. School of Earth and Environment University of Leeds Leeds UK, National Centre for Atmospheric Science, School of Earth and Environment University of Leeds Leeds UK
Publication Date:
Research Org.:
Univ. of Colorado, Boulder, CO (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1395400
Alternate Identifier(s):
OSTI ID: 1395401; OSTI ID: 1466742
Grant/Contract Number:  
DE‐SC0007005; DE‐SC0011918; SC0007005; SC0011918
Resource Type:
Published Article
Journal Name:
Journal of Geophysical Research: Atmospheres
Additional Journal Information:
Journal Name: Journal of Geophysical Research: Atmospheres Journal Volume: 122 Journal Issue: 18; Journal ID: ISSN 2169-897X
Publisher:
American Geophysical Union (AGU)
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Arctic; boundary layer; turbulence; remote sensing; clouds

Citation Formats

Brooks, Ian M., Tjernström, Michael, Persson, P. Ola G., Shupe, Matthew D., Atkinson, Rebecca A., Canut, Guylaine, Birch, Cathryn E., Mauritsen, Thorsten, Sedlar, Joseph, and Brooks, Barbara J. The Turbulent Structure of the Arctic Summer Boundary Layer During The Arctic Summer Cloud‐Ocean Study. United States: N. p., 2017. Web. doi:10.1002/2017JD027234.
Brooks, Ian M., Tjernström, Michael, Persson, P. Ola G., Shupe, Matthew D., Atkinson, Rebecca A., Canut, Guylaine, Birch, Cathryn E., Mauritsen, Thorsten, Sedlar, Joseph, & Brooks, Barbara J. The Turbulent Structure of the Arctic Summer Boundary Layer During The Arctic Summer Cloud‐Ocean Study. United States. https://doi.org/10.1002/2017JD027234
Brooks, Ian M., Tjernström, Michael, Persson, P. Ola G., Shupe, Matthew D., Atkinson, Rebecca A., Canut, Guylaine, Birch, Cathryn E., Mauritsen, Thorsten, Sedlar, Joseph, and Brooks, Barbara J. Wed . "The Turbulent Structure of the Arctic Summer Boundary Layer During The Arctic Summer Cloud‐Ocean Study". United States. https://doi.org/10.1002/2017JD027234.
@article{osti_1395400,
title = {The Turbulent Structure of the Arctic Summer Boundary Layer During The Arctic Summer Cloud‐Ocean Study},
author = {Brooks, Ian M. and Tjernström, Michael and Persson, P. Ola G. and Shupe, Matthew D. and Atkinson, Rebecca A. and Canut, Guylaine and Birch, Cathryn E. and Mauritsen, Thorsten and Sedlar, Joseph and Brooks, Barbara J.},
abstractNote = {Abstract The mostly ice covered Arctic Ocean is dominated by low‐level liquid‐ or mixed‐phase clouds. Turbulence within stratocumulus is primarily driven by cloud top cooling that induces convective instability. Using a suite of in situ and remote sensing instruments we characterize turbulent mixing in Arctic stratocumulus, and for the first time we estimate profiles of the gradient Richardson number at relatively high resolution in both time (10 min) and altitude (10 m). It is found that the mixing occurs both within the cloud, as expected, and by wind shear instability near the surface. About 75% of the time these two layers are separated by a stably stratified inversion at 100–200 m altitude. Exceptions are associated with low cloud bases that allow the cloud‐driven turbulence to reach the surface. The results imply that turbulent coupling between the surface and the cloud is sporadic or intermittent.},
doi = {10.1002/2017JD027234},
journal = {Journal of Geophysical Research: Atmospheres},
number = 18,
volume = 122,
place = {United States},
year = {Wed Sep 27 00:00:00 EDT 2017},
month = {Wed Sep 27 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/2017JD027234

Citation Metrics:
Cited by: 44 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Remote Sensing of Boundary Layer Temperature Profiles by a Scanning 5-mm Microwave Radiometer and RASS: Comparison Experiments
journal, July 1999


The performance of a global and mesoscale model over the central Arctic Ocean during late summer
journal, January 2009

  • Birch, C. E.; Brooks, I. M.; Tjernström, M.
  • Journal of Geophysical Research, Vol. 114, Issue D13
  • DOI: 10.1029/2008JD010790

FIRE Arctic Clouds Experiment
journal, January 2000


Characteristic nature of vertical motions observed in Arctic mixed-phase stratocumulus
journal, January 2014


Relationship between Low-Level Jet Properties and Turbulence Kinetic Energy in the Nocturnal Stable Boundary Layer
journal, October 2003


Assessment of Arctic Cloud Cover Anomalies in Atmospheric Reanalysis Products Using Satellite Data
journal, September 2016


On the Effects of Moisture on the Brunt-Väisälä Frequency
journal, October 1982


The route to dissipation in strongly stratified and rotating flows
journal, February 2013

  • Deusebio, Enrico; Vallgren, A.; Lindborg, E.
  • Journal of Fluid Mechanics, Vol. 720
  • DOI: 10.1017/jfm.2012.611

The Arctic Summer Cloud Ocean Study (ASCOS): overview and experimental design
journal, January 2014

  • Tjernström, M.; Leck, C.; Birch, C. E.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 6
  • DOI: 10.5194/acp-14-2823-2014

Analysis of integrated cloud liquid and precipitable water vapor retrievals from microwave radiometers during the Surface Heat Budget of the Arctic Ocean project
journal, December 2001

  • Westwater, Ed R.; Han, Yong; Shupe, Matthew D.
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D23
  • DOI: 10.1029/2000JD000055

An Introduction to Boundary Layer Meteorology
book, January 1988


On the Relationship between Thermodynamic Structure and Cloud Top, and Its Climate Significance in the Arctic
journal, April 2012

  • Sedlar, Joseph; Shupe, Matthew D.; Tjernström, Michael
  • Journal of Climate, Vol. 25, Issue 7
  • DOI: 10.1175/JCLI-D-11-00186.1

Finestructure of Elevated Stable Layers Observed by Sounder and In Situ Tower Sensors
journal, October 1985


‘Modelling the Arctic Boundary Layer: An Evaluation of Six Arcmip Regional-Scale Models using Data from the Sheba Project’
journal, November 2005

  • Tjernström, Michael; Žagar, Mark; Svensson, Gunilla
  • Boundary-Layer Meteorology, Vol. 117, Issue 2
  • DOI: 10.1007/s10546-004-7954-z

The Height of the Atmospheric Planetary Boundary layer: State of the Art and New Development
book, October 2011


The vertical structure of the lower Arctic troposphere analysed from observations and the ERA-40 reanalysis
journal, January 2009

  • Tjernström, Michael; Graversen, Rune Grand
  • Quarterly Journal of the Royal Meteorological Society, Vol. 135, Issue 639
  • DOI: 10.1002/qj.380

How Well Do Regional Climate Models Reproduce Radiation and Clouds in the Arctic? An Evaluation of ARCMIP Simulations
journal, September 2008

  • Tjernström, Michael; Sedlar, Joseph; Shupe, Matthew D.
  • Journal of Applied Meteorology and Climatology, Vol. 47, Issue 9
  • DOI: 10.1175/2008JAMC1845.1

Parameterizing turbulent exchange over sea ice: the ice station weddell results
journal, February 2005

  • Andreas, Edgar L.; Jordan, Rachel E.; Makshtas, Aleksandar P.
  • Boundary-Layer Meteorology, Vol. 114, Issue 2
  • DOI: 10.1007/s10546-004-1414-7

Implications of Limited Liquid Water Path on Static Mixing within Arctic Low-Level Clouds
journal, December 2014


Boundary layer stability and Arctic climate change: a feedback study using EC-Earth
journal, December 2011


A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo and cloud radiative forcing
journal, November 2010

  • Sedlar, Joseph; Tjernström, Michael; Mauritsen, Thorsten
  • Climate Dynamics, Vol. 37, Issue 7-8
  • DOI: 10.1007/s00382-010-0937-5

Warm-air advection, air mass transformation and fog causes rapid ice melt: WARM-AIR ADVECTION, FOG AND ICE MELT
journal, July 2015

  • Tjernström, Michael; Shupe, Matthew D.; Brooks, Ian M.
  • Geophysical Research Letters, Vol. 42, Issue 13
  • DOI: 10.1002/2015GL064373

A ground-based multisensor cloud phase classifier
journal, January 2007


Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model
journal, April 1996

  • Edwards, J. M.; Slingo, A.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 122, Issue 531
  • DOI: 10.1002/qj.49712253107

Direct determination of the air-sea CO 2 gas transfer velocity in Arctic sea ice regions : GAS TRANSFER VELOCITY IN ARCTIC SEA ICE
journal, April 2017

  • Prytherch, John; Brooks, Ian M.; Crill, Patrick M.
  • Geophysical Research Letters, Vol. 44, Issue 8
  • DOI: 10.1002/2017GL073593

Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion
journal, January 2011

  • Solomon, A.; Shupe, M. D.; Persson, P. O. G.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 19
  • DOI: 10.5194/acp-11-10127-2011

Mixed-phase clouds cause climate model biases in Arctic wintertime temperature inversions
journal, October 2013


On the potential contribution of open lead particle emissions to the central Arctic aerosol concentration
journal, January 2011


On the stability of heterogeneous shear flows
journal, June 1961


Radiation Profiles in Extended Water Clouds. II: Parameterization Schemes
journal, November 1978


Meteorological conditions in the central Arctic summer during the Arctic Summer Cloud Ocean Study (ASCOS)
journal, January 2012

  • Tjernström, M.; Birch, C. E.; Brooks, I. M.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 15
  • DOI: 10.5194/acp-12-6863-2012

Deriving Arctic Cloud Microphysics at Barrow, Alaska: Algorithms, Results, and Radiative Closure
journal, July 2015

  • Shupe, Matthew D.; Turner, David D.; Zwink, Alexander
  • Journal of Applied Meteorology and Climatology, Vol. 54, Issue 7
  • DOI: 10.1175/JAMC-D-15-0054.1

The Sensitivity of Springtime Arctic Mixed-Phase Stratocumulus Clouds to Surface-Layer and Cloud-Top Inversion-Layer Moisture Sources
journal, February 2014

  • Solomon, Amy; Shupe, Matthew D.; Persson, Ola
  • Journal of the Atmospheric Sciences, Vol. 71, Issue 2
  • DOI: 10.1175/JAS-D-13-0179.1

Measurements near the Atmospheric Surface Flux Group tower at SHEBA: Near-surface conditions and surface energy budget
journal, January 2002


Clouds at Arctic Atmospheric Observatories. Part I: Occurrence and Macrophysical Properties
journal, March 2011

  • Shupe, Matthew D.; Walden, Von P.; Eloranta, Edwin
  • Journal of Applied Meteorology and Climatology, Vol. 50, Issue 3
  • DOI: 10.1175/2010JAMC2467.1

Motion-correlated flow distortion and wave-induced biases in air–sea flux measurements from ships
journal, January 2015

  • Prytherch, J.; Yelland, M. J.; Brooks, I. M.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 18
  • DOI: 10.5194/acp-15-10619-2015

Observations of Stably Stratified Shear-Driven Atmospheric Turbulence at Low and High Richardson Numbers
journal, February 2007

  • Mauritsen, Thorsten; Svensson, Gunilla
  • Journal of the Atmospheric Sciences, Vol. 64, Issue 2
  • DOI: 10.1175/JAS3856.1

Summer Arctic clouds in the ECMWF forecast model: an evaluation of cloud parametrization schemes: Summer Arctic Clouds in the IFS Model
journal, October 2015

  • Sotiropoulou, Georgia; Sedlar, Joseph; Forbes, Richard
  • Quarterly Journal of the Royal Meteorological Society, Vol. 142, Issue 694
  • DOI: 10.1002/qj.2658

Asymptotic Similarity in Neutral Barotropic Planetary Boundary Layers
journal, November 1968


Cloud and boundary layer interactions over the Arctic sea ice in late summer
journal, January 2013

  • Shupe, M. D.; Persson, P. O. G.; Brooks, I. M.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 18
  • DOI: 10.5194/acp-13-9379-2013

Annual Cycle of Radiation Fluxes over the Arctic Ocean: Sensitivity to Cloud Optical Properties
journal, November 1992


Atmospheric boundary layer structure and drag coefficients over sea ice
journal, January 1985


Parametrizing turbulent exchange over summer sea ice and the marginal ice zone
journal, April 2010

  • Andreas, Edgar L.; Horst, Thomas W.; Grachev, Andrey A.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 136, Issue 649
  • DOI: 10.1002/qj.618

Modulation of Small-Scale Turbulence by Ducted Gravity Waves in the Nocturnal Boundary Layer
journal, April 2008

  • Meillier, Y. P.; Frehlich, R. G.; Jones, R. M.
  • Journal of the Atmospheric Sciences, Vol. 65, Issue 4
  • DOI: 10.1175/2007JAS2359.1

On the Scale-dependence of the Gradient Richardson Number in the Residual Layer
journal, December 2007

  • Balsley, Ben B.; Svensson, Gunilla; Tjernström, Michael
  • Boundary-Layer Meteorology, Vol. 127, Issue 1
  • DOI: 10.1007/s10546-007-9251-0

Modelling atmospheric structure, cloud and their response to CCN in the central Arctic: ASCOS case studies
journal, January 2012

  • Birch, C. E.; Brooks, I. M.; Tjernström, M.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 7
  • DOI: 10.5194/acp-12-3419-2012

The Effects of Critical Layers on Residual Layer Turbulence
journal, February 2009

  • Tjernström, Michael; Balsley, Ben B.; Svensson, Gunilla
  • Journal of the Atmospheric Sciences, Vol. 66, Issue 2
  • DOI: 10.1175/2008JAS2729.1

The free troposphere as a potential source of arctic boundary layer aerosol particles: Free Troposphere and Boundary Layer Arctic Aerosol
journal, July 2017

  • Igel, Adele L.; Ekman, Annica M. L.; Leck, Caroline
  • Geophysical Research Letters, Vol. 44, Issue 13
  • DOI: 10.1002/2017GL073808

Observations of surface momentum exchange over the marginal ice zone and recommendations for its parametrisation
journal, January 2016

  • Elvidge, A. D.; Renfrew, I. A.; Weiss, A. I.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 3
  • DOI: 10.5194/acp-16-1545-2016

Growth and decay of turbulence in a stably stratified shear flow
journal, October 1988


Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar
journal, January 2015

  • Achtert, P.; Brooks, I. M.; Brooks, B. J.
  • Atmospheric Measurement Techniques, Vol. 8, Issue 11
  • DOI: 10.5194/amt-8-4993-2015

Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: a review
journal, January 2014


Arctic Clouds and Surface Radiation – a critical comparison of satellite retrievals and the ERA-Interim reanalysis
journal, January 2012

  • Zygmuntowska, M.; Mauritsen, T.; Quaas, J.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 14
  • DOI: 10.5194/acp-12-6667-2012

Evaluation of turbulent dissipation rate retrievals from Doppler Cloud Radar
journal, January 2012

  • Shupe, M. D.; Brooks, I. M.; Canut, G.
  • Atmospheric Measurement Techniques, Vol. 5, Issue 6
  • DOI: 10.5194/amt-5-1375-2012

A Climatology of Atmospheric Wavenumber Spectra of Wind and Temperature Observed by Commercial Aircraft
journal, May 1985


The Summer Arctic Boundary Layer during the Arctic Ocean Experiment 2001 (AOE-2001)
journal, October 2005


Arctic winter warming amplified by the thermal inversion and consequent low infrared cooling to space
journal, October 2011

  • Bintanja, R.; Graversen, R. G.; Hazeleger, W.
  • Nature Geoscience, Vol. 4, Issue 11
  • DOI: 10.1038/ngeo1285

Interactions among Turbulence, Radiation and Microphysics in Arctic Stratus Clouds
journal, January 1986


An annual cycle of Arctic surface cloud forcing at SHEBA
journal, January 2002


The thermodynamic structure of summer Arctic stratocumulus and the dynamic coupling to the surface
journal, January 2014

  • Sotiropoulou, G.; Sedlar, J.; Tjernström, M.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 22
  • DOI: 10.5194/acp-14-12573-2014