skip to main content

DOE PAGESDOE PAGES

Title: Theory and optical design of x-ray echo spectrometers

X-ray echo spectroscopy, a space-domain counterpart of neutron spin echo, is a recently proposed inelastic x-ray scattering (IXS) technique. X-ray echo spectroscopy relies on imaging IXS spectra and does not require x-ray monochromatization. Due to this, the echo-type IXS spectrometers are broadband, and thus have a potential to simultaneously provide dramatically increased signal strength, reduced measurement times, and higher resolution compared to the traditional narrow-band scanning-type IXS spectrometers. The theory of x-ray echo spectrometers presented earlier [Yu. Shvyd'ko, Phys. Rev. Lett. 116, 080801 (2016)] is developed here further with a focus on questions of practical importance, which could facilitate optical design and assessment of the feasibility and performance of the echo spectrometers. Among others, the following questions are addressed: spectral resolution, refocusing condition, echo spectrometer tolerances, refocusing condition adjustment, effective beam size on the sample, spectral window of imaging and scanning range, impact of the secondary source size on the spectral resolution, angular dispersive optics, focusing and collimating optics, and detector's spatial resolution. In conclusion, examples of optical designs and characteristics of echo spectrometers with 1-meV and 0.1-meV resolutions are presented.
Authors:
 [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Publication Date:
Grant/Contract Number:
AC02-06CH11357
Type:
Accepted Manuscript
Journal Name:
Physical Review A
Additional Journal Information:
Journal Volume: 96; Journal Issue: 2; Journal ID: ISSN 2469-9926
Publisher:
American Physical Society (APS)
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; 73 NUCLEAR PHYSICS AND RADIATION PHYSICS
OSTI Identifier:
1393846
Alternate Identifier(s):
OSTI ID: 1373805