skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Multimodal microfluidic platform for controlled culture and analysis of unicellular organisms

Abstract

Modern live-cell imaging approaches permit real-time visualization of biological processes, yet limitations exist for unicellular organism isolation, culturing and long-term imaging that preclude fully understanding how cells sense and respond to environmental perturbations and the link between single-cell variability and whole-population dynamics. Here we present a microfluidic platform that provides fine control over the local environment with the capacity to replace media components at any experimental time point, and provides both perfused and compartmentalized cultivation conditions depending on the valve configuration. In this work, the functionality and flexibility of the platform were validated using both bacteria and yeast having different sizes, motility and growth media. The demonstrated ability to track the growth and dynamics of both motile and non-motile prokaryotic and eukaryotic organisms emphasizes the versatility of the devices, which with further scale-up should enable studies in bioenergy and environmental research.

Authors:
 [1];  [1];  [1];  [2];  [3];  [1];  [1]; ORCiD logo [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
  2. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Energy Processes and Materials Division
  3. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Biological Sciences Division
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
OSTI Identifier:
1393736
Alternate Identifier(s):
OSTI ID: 1392708
Report Number(s):
[PNNL-SA-129125]
[Journal ID: ISSN 1932-1058; 49612; KP1606000]
Grant/Contract Number:  
[AC05-76RL01830; 66382]
Resource Type:
Accepted Manuscript
Journal Name:
Biomicrofluidics
Additional Journal Information:
[ Journal Volume: 11; Journal Issue: 5]; Journal ID: ISSN 1932-1058
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; Environmental Molecular Sciences Laboratory

Citation Formats

Geng, Tao, Smallwood, Chuck R., Bredeweg, Erin L., Pomraning, Kyle R., Plymale, Andrew E., Baker, Scott E., Evans, James E., and Kelly, Ryan T. Multimodal microfluidic platform for controlled culture and analysis of unicellular organisms. United States: N. p., 2017. Web. doi:10.1063/1.4986533.
Geng, Tao, Smallwood, Chuck R., Bredeweg, Erin L., Pomraning, Kyle R., Plymale, Andrew E., Baker, Scott E., Evans, James E., & Kelly, Ryan T. Multimodal microfluidic platform for controlled culture and analysis of unicellular organisms. United States. doi:10.1063/1.4986533.
Geng, Tao, Smallwood, Chuck R., Bredeweg, Erin L., Pomraning, Kyle R., Plymale, Andrew E., Baker, Scott E., Evans, James E., and Kelly, Ryan T. Tue . "Multimodal microfluidic platform for controlled culture and analysis of unicellular organisms". United States. doi:10.1063/1.4986533. https://www.osti.gov/servlets/purl/1393736.
@article{osti_1393736,
title = {Multimodal microfluidic platform for controlled culture and analysis of unicellular organisms},
author = {Geng, Tao and Smallwood, Chuck R. and Bredeweg, Erin L. and Pomraning, Kyle R. and Plymale, Andrew E. and Baker, Scott E. and Evans, James E. and Kelly, Ryan T.},
abstractNote = {Modern live-cell imaging approaches permit real-time visualization of biological processes, yet limitations exist for unicellular organism isolation, culturing and long-term imaging that preclude fully understanding how cells sense and respond to environmental perturbations and the link between single-cell variability and whole-population dynamics. Here we present a microfluidic platform that provides fine control over the local environment with the capacity to replace media components at any experimental time point, and provides both perfused and compartmentalized cultivation conditions depending on the valve configuration. In this work, the functionality and flexibility of the platform were validated using both bacteria and yeast having different sizes, motility and growth media. The demonstrated ability to track the growth and dynamics of both motile and non-motile prokaryotic and eukaryotic organisms emphasizes the versatility of the devices, which with further scale-up should enable studies in bioenergy and environmental research.},
doi = {10.1063/1.4986533},
journal = {Biomicrofluidics},
number = [5],
volume = [11],
place = {United States},
year = {2017},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

A Generalizable, Tunable Microfluidic Platform for Delivering Fast Temporally Varying Chemical Signals to Probe Single-Cell Response Dynamics
journal, October 2014

  • Chingozha, Loice; Zhan, Mei; Zhu, Cheng
  • Analytical Chemistry, Vol. 86, Issue 20
  • DOI: 10.1021/ac5019843

Stationary nanoliter droplet array with a substrate of choice for single adherent/nonadherent cell incubation and analysis
journal, July 2014

  • Shemesh, J.; Ben Arye, T.; Avesar, J.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 31
  • DOI: 10.1073/pnas.1404472111

The RootChip: An Integrated Microfluidic Chip for Plant Science
journal, December 2011

  • Grossmann, Guido; Guo, Woei-Jiun; Ehrhardt, David W.
  • The Plant Cell, Vol. 23, Issue 12
  • DOI: 10.1105/tpc.111.092577

Oxygen-dependent autoaggregation in Shewanella oneidensis MR-1
journal, July 2008


Eyespot-dependent determination of the phototactic sign in Chlamydomonas reinhardtii
journal, April 2016

  • Ueki, Noriko; Ide, Takahiro; Mochiji, Shota
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 19
  • DOI: 10.1073/pnas.1525538113

A molecular genetic toolbox for Yarrowia lipolytica
journal, January 2017

  • Bredeweg, Erin L.; Pomraning, Kyle R.; Dai, Ziyu
  • Biotechnology for Biofuels, Vol. 10, Issue 1
  • DOI: 10.1186/s13068-016-0687-7

Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption
journal, April 2014

  • Wang, Benjamin L.; Ghaderi, Adel; Zhou, Hang
  • Nature Biotechnology, Vol. 32, Issue 5
  • DOI: 10.1038/nbt.2857

Dynamic control and quantification of bacterial population dynamics in droplets
journal, August 2015


Microfluidic Local Perfusion Chambers for the Visualization and Manipulation of Synapses
journal, April 2010


An array microhabitat system for high throughput studies of microalgal growth under controlled nutrient gradients
journal, January 2015

  • Kim, Beum Jun; Richter, Lubna V.; Hatter, Nicholas
  • Lab on a Chip, Vol. 15, Issue 18
  • DOI: 10.1039/C5LC00727E

Microfluidic single cell arrays to interrogate signalling dynamics of individual, patient-derived hematopoietic stem cells
journal, January 2009

  • Faley, Shannon L.; Copland, Mhairi; Wlodkowic, Donald
  • Lab on a Chip, Vol. 9, Issue 18
  • DOI: 10.1039/b902083g

Morphological and metabolic shifts of Yarrowia lipolytica induced by alteration of the dissolved oxygen concentration in the growth environment
journal, February 2014

  • Bellou, S.; Makri, A.; Triantaphyllidou, I. -E.
  • Microbiology, Vol. 160, Issue Pt_4
  • DOI: 10.1099/mic.0.074302-0

Measurement of single-cell dynamics
journal, June 2010

  • Spiller, David G.; Wood, Christopher D.; Rand, David A.
  • Nature, Vol. 465, Issue 7299, p. 736-745
  • DOI: 10.1038/nature09232

Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform
journal, March 2012

  • Lee, S. S.; Vizcarra, I. A.; Huberts, D. H. E. W.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 13
  • DOI: 10.1073/pnas.1113505109

Microfluidic chemostat for measuring single cell dynamics in bacteria
journal, January 2013

  • Long, Zhicheng; Nugent, Eileen; Javer, Avelino
  • Lab on a Chip, Vol. 13, Issue 5
  • DOI: 10.1039/c2lc41196b

Trapping and viability of swimming bacteria in an optoelectric trap
journal, January 2016

  • Mishra, A.; Maltais, T. R.; Walter, T. M.
  • Lab on a Chip, Vol. 16, Issue 6
  • DOI: 10.1039/C5LC01559F

Microfluidic Confinement of Single Cells of Bacteria in Small Volumes Initiates High-Density Behavior of Quorum Sensing and Growth and Reveals Its Variability
journal, July 2009

  • Boedicker, James Q.; Vincent, Meghan E.; Ismagilov, Rustem F.
  • Angewandte Chemie International Edition, Vol. 48, Issue 32
  • DOI: 10.1002/anie.200901550

Memory and modularity in cell-fate decision making
journal, November 2013

  • Norman, Thomas M.; Lord, Nathan D.; Paulsson, Johan
  • Nature, Vol. 503, Issue 7477
  • DOI: 10.1038/nature12804

Long-term model predictive control of gene expression at the population and single-cell levels
journal, August 2012

  • Uhlendorf, J.; Miermont, A.; Delaveau, T.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 35
  • DOI: 10.1073/pnas.1206810109

The present and future role of microfluidics in biomedical research
journal, March 2014

  • Sackmann, Eric K.; Fulton, Anna L.; Beebe, David J.
  • Nature, Vol. 507, Issue 7491
  • DOI: 10.1038/nature13118

TipChip: a modular, MEMS-based platform for experimentation and phenotyping of tip-growing cells
journal, January 2013

  • Agudelo, Carlos G.; Sanati Nezhad, Amir; Ghanbari, Mahmood
  • The Plant Journal, Vol. 73, Issue 6
  • DOI: 10.1111/tpj.12093

Microfluidic devices for measuring gene network dynamics in single cells
journal, August 2009

  • Bennett, Matthew R.; Hasty, Jeff
  • Nature Reviews Genetics, Vol. 10, Issue 9
  • DOI: 10.1038/nrg2625

Tracking lineages of single cells in lines using a microfluidic device
journal, October 2009

  • Rowat, A. C.; Bird, J. C.; Agresti, J. J.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 43
  • DOI: 10.1073/pnas.0903163106

Fungi Use Efficient Algorithms for the Exploration of Microfluidic Networks
journal, August 2006

  • Hanson, Kristi L.; Nicolau, Dan V.; Filipponi, Luisa
  • Small, Vol. 2, Issue 10
  • DOI: 10.1002/smll.200600105

Single-Cell Forensic Short Tandem Repeat Typing within Microfluidic Droplets
journal, November 2013

  • Geng, Tao; Novak, Richard; Mathies, Richard A.
  • Analytical Chemistry, Vol. 86, Issue 1
  • DOI: 10.1021/ac403137h

Compartmentalized microchannel array for high-throughput analysis of single cell polarized growth and dynamics
journal, November 2015

  • Geng, Tao; Bredeweg, Erin L.; Szymanski, Craig J.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep16111

Charting Microbial Phenotypes in Multiplex Nanoliter Batch Bioreactors
journal, May 2013

  • Dai, Jing; Yoon, Sung Ho; Sim, Hye Young
  • Analytical Chemistry, Vol. 85, Issue 12
  • DOI: 10.1021/ac400648z

Non-contact fiber-optical trapping of motile bacteria: dynamics observation and energy estimation
journal, October 2014

  • Xin, Hongbao; Liu, Qingyuan; Li, Baojun
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep06576

Biotechnological applications of Yarrowia lipolytica: Past, present and future
journal, December 2015


Ecology and Biotechnology of the Genus Shewanella
journal, October 2007


A microfluidic chemostat for experiments with bacterial and yeast cells
journal, August 2005

  • Groisman, Alex; Lobo, Caroline; Cho, HoJung
  • Nature Methods, Vol. 2, Issue 9
  • DOI: 10.1038/nmeth784

Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography
journal, April 2000


A droplet microfluidics platform for rapid microalgal growth and oil production analysis: Droplet Microfluidics Algal Growth and Oil Analysis
journal, February 2016

  • Kim, Hyun Soo; Guzman, Adrian R.; Thapa, Hem R.
  • Biotechnology and Bioengineering, Vol. 113, Issue 8
  • DOI: 10.1002/bit.25930

High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays
journal, May 2011

  • Lecault, Véronique; VanInsberghe, Michael; Sekulovic, Sanja
  • Nature Methods, Vol. 8, Issue 7
  • DOI: 10.1038/nmeth.1614

The single-cell chemostat: an agarose-based, microfluidic device for high-throughput, single-cell studies of bacteria and bacterial communities
journal, January 2012

  • Moffitt, Jeffrey R.; Lee, Jeffrey B.; Cluzel, Philippe
  • Lab on a Chip, Vol. 12, Issue 8
  • DOI: 10.1039/c2lc00009a