skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Atomic Insights into the Enhanced Surface Stability in High Voltage Cathode Materials by Ultrathin Coating

Abstract

Surface properties of electrode materials play a critical role in the function of batteries. Therefore, surface modifications, such as coatings, have been widely used to improve battery performance. Understanding how these coatings function to improve battery performance is crucial for both scientific research and applications. Here in this study the electrochemical performance of coated and uncoated LiNi 0.5Mn 1.5O 4 (LNMO) electrodes is correlated with ensemble-averaged soft X-ray absorption spectroscopy (XAS) and spatially resolved scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS) to illustrate the mechanism of how ultrathin layer Al 2O 3 coatings improve the cycle life of LiNi 0.5Mn 1.5O 4 . Mn 2+ evolution on the surface is clearly observed in the uncoated sample, which results from the reaction between the electrolytic solution and the surfaces of LiNi 0.5Mn 1.5O 4 particles, and also possibly atomic structure reconstructions and oxygen loss from the surface region in LiNi 0.5Mn 1.5O 4. The coating effectively suppresses Mn 2+ evolution and improves the battery performance by decelerating the impedance buildup from the surface passivation. This study demonstrates the importance of combining ensemble-averaged techniques (e.g., XAS) with localized techniques (e.g., STEM-EELS), as the latter may yield unrepresentative information due to themore » limited number of studied particles, and sheds light on the design of future coating processes and materials.« less

Authors:
 [1];  [2];  [3];  [4];  [1];  [1];  [1];  [1];  [5];  [5];  [6];  [7]
  1. Univ. of Southern California, Los Angeles, CA (United States). Mork Family Dept. of Chemical Engineering and Materials Science
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Storage & Distributed Resources Division; Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Chemistry
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)
  4. Univ. of Southern California, Los Angeles, CA (United States). Center for Electron Microscopy and Microanalysis
  5. Univ. of Southern California, Los Angeles, CA (United States). Ming Hsieh Dept. of Electrical Engineering
  6. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Storage & Distributed Resources Division
  7. Univ. of Southern California, Los Angeles, CA (United States). Mork Family Dept. of Chemical Engineering and Materials Science and Ming Hsieh Dept. of Electrical Engineering
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1393617
Alternate Identifier(s):
OSTI ID: 1353181; OSTI ID: 1401265
Grant/Contract Number:  
AC02-05CH11231; AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Functional Materials
Additional Journal Information:
Journal Volume: 27; Journal Issue: 7; Journal ID: ISSN 1616-301X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; high voltage cathodes; LiNi0.5Mn1.5O4; lithium ion batteries; Mn2+ evolution; surface modifications

Citation Formats

Fang, Xin, Lin, Feng, Nordlund, Dennis, Mecklenburg, Matthew, Ge, Mingyuan, Rong, Jiepeng, Zhang, Anyi, Shen, Chenfei, Liu, Yihang, Cao, Yu, Doeff, Marca M., and Zhou, Chongwu. Atomic Insights into the Enhanced Surface Stability in High Voltage Cathode Materials by Ultrathin Coating. United States: N. p., 2017. Web. doi:10.1002/adfm.201602873.
Fang, Xin, Lin, Feng, Nordlund, Dennis, Mecklenburg, Matthew, Ge, Mingyuan, Rong, Jiepeng, Zhang, Anyi, Shen, Chenfei, Liu, Yihang, Cao, Yu, Doeff, Marca M., & Zhou, Chongwu. Atomic Insights into the Enhanced Surface Stability in High Voltage Cathode Materials by Ultrathin Coating. United States. doi:10.1002/adfm.201602873.
Fang, Xin, Lin, Feng, Nordlund, Dennis, Mecklenburg, Matthew, Ge, Mingyuan, Rong, Jiepeng, Zhang, Anyi, Shen, Chenfei, Liu, Yihang, Cao, Yu, Doeff, Marca M., and Zhou, Chongwu. Tue . "Atomic Insights into the Enhanced Surface Stability in High Voltage Cathode Materials by Ultrathin Coating". United States. doi:10.1002/adfm.201602873. https://www.osti.gov/servlets/purl/1393617.
@article{osti_1393617,
title = {Atomic Insights into the Enhanced Surface Stability in High Voltage Cathode Materials by Ultrathin Coating},
author = {Fang, Xin and Lin, Feng and Nordlund, Dennis and Mecklenburg, Matthew and Ge, Mingyuan and Rong, Jiepeng and Zhang, Anyi and Shen, Chenfei and Liu, Yihang and Cao, Yu and Doeff, Marca M. and Zhou, Chongwu},
abstractNote = {Surface properties of electrode materials play a critical role in the function of batteries. Therefore, surface modifications, such as coatings, have been widely used to improve battery performance. Understanding how these coatings function to improve battery performance is crucial for both scientific research and applications. Here in this study the electrochemical performance of coated and uncoated LiNi0.5Mn1.5O4 (LNMO) electrodes is correlated with ensemble-averaged soft X-ray absorption spectroscopy (XAS) and spatially resolved scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS) to illustrate the mechanism of how ultrathin layer Al2O3 coatings improve the cycle life of LiNi0.5Mn1.5O4 . Mn2+ evolution on the surface is clearly observed in the uncoated sample, which results from the reaction between the electrolytic solution and the surfaces of LiNi0.5Mn1.5O4 particles, and also possibly atomic structure reconstructions and oxygen loss from the surface region in LiNi0.5Mn1.5O4. The coating effectively suppresses Mn2+ evolution and improves the battery performance by decelerating the impedance buildup from the surface passivation. This study demonstrates the importance of combining ensemble-averaged techniques (e.g., XAS) with localized techniques (e.g., STEM-EELS), as the latter may yield unrepresentative information due to the limited number of studied particles, and sheds light on the design of future coating processes and materials.},
doi = {10.1002/adfm.201602873},
journal = {Advanced Functional Materials},
number = 7,
volume = 27,
place = {United States},
year = {2017},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A polymer electrolyte-skinned active material strategy toward high-voltage lithium ion batteries: a polyimide-coated LiNi0.5Mn1.5O4 spinel cathode material case
journal, January 2012

  • Cho, Ju-Hyun; Park, Jang-Hoon; Lee, Myeong-Hee
  • Energy & Environmental Science, Vol. 5, Issue 5
  • DOI: 10.1039/c2ee03389e

Ultrathin Surface Modification by Atomic Layer Deposition on High Voltage Cathode LiNi 0.5 Mn 1.5 O 4 for Lithium Ion Batteries
journal, December 2013


Enhanced electrochemical stability of high-voltage LiNi0.5Mn1.5O4 cathode by surface modification using atomic layer deposition
journal, November 2014

  • Song, Jaehee; Han, Xiaogang; Gaskell, Karen J.
  • Journal of Nanoparticle Research, Vol. 16, Issue 11
  • DOI: 10.1007/s11051-014-2745-z

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Topological defect dynamics in operando battery nanoparticles
journal, June 2015


X-ray diffraction and electrochemical impedance spectroscopy study of zinc coated LiNi0.5Mn1.5O4 electrodes
journal, May 2004


Surface chemistry of LiNi0.5Mn1.5O4 particles coated by Al2O3 using atomic layer deposition for lithium-ion batteries
journal, January 2015


Effects of Atomic Layer Deposition of Al2O3 on the Li[Li0.20Mn0.54Ni0.13Co0.13]O2 Cathode for Lithium-Ion Batteries
journal, January 2011

  • Seok Jung, Yoon; Cavanagh, Andrew S.; Yan, Yanfa
  • Journal of The Electrochemical Society, Vol. 158, Issue 12
  • DOI: 10.1149/2.030112jes

Direct evidence of gradient Mn(II) evolution at charged states in LiNi0.5Mn1.5O4 electrodes with capacity fading
journal, January 2015


In Situ Determination of the Liquid/Solid Interface Thickness and Composition for the Li Ion Cathode LiMn 1.5 Ni 0.5 O 4
journal, October 2014

  • Browning, James F.; Baggetto, Loïc; Jungjohann, Katherine L.
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 21
  • DOI: 10.1021/am5032055

Surface Structure Evolution of LiMn 2 O 4 Cathode Material upon Charge/Discharge
journal, May 2014

  • Tang, Daichun; Sun, Yang; Yang, Zhenzhong
  • Chemistry of Materials, Vol. 26, Issue 11
  • DOI: 10.1021/cm501125e

Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries
journal, May 2010


Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process
journal, June 2005

  • Puurunen, Riikka L.
  • Journal of Applied Physics, Vol. 97, Issue 12, Article No. 121301
  • DOI: 10.1063/1.1940727

Improved electrochemical properties of BiOF-coated 5V spinel Li[Ni0.5Mn1.5]O4 for rechargeable lithium batteries
journal, April 2010


Oxygen-Release-Related Thermal Stability and Decomposition Pathways of Li x Ni 0.5 Mn 1.5 O 4 Cathode Materials
journal, December 2013

  • Hu, Enyuan; Bak, Seong-Min; Liu, Jue
  • Chemistry of Materials, Vol. 26, Issue 2
  • DOI: 10.1021/cm403400y

Electrochemical energy storage in a sustainable modern society
journal, January 2014


Graphene-oxide-coated LiNi0.5Mn1.5O4 as high voltage cathode for lithium ion batteries with high energy density and long cycle life
journal, January 2013

  • Fang, Xin; Ge, Mingyuan; Rong, Jiepeng
  • Journal of Materials Chemistry A, Vol. 1, Issue 12
  • DOI: 10.1039/c3ta01534c

A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery
journal, September 2011

  • Jung, Hun-Gi; Jang, Min Woo; Hassoun, Jusef
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1527

The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

Profiling the nanoscale gradient in stoichiometric layered cathode particles for lithium-ion batteries
journal, January 2014

  • Lin, Feng; Nordlund, Dennis; Markus, Isaac M.
  • Energy & Environmental Science, Vol. 7, Issue 9
  • DOI: 10.1039/C4EE01400F

Controlling side reactions and self-discharge in high-voltage spinel cathodes: the critical role of surface crystallographic facets
journal, January 2015

  • Kuppan, Saravanan; Duncan, Hugues; Chen, Guoying
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 39
  • DOI: 10.1039/C5CP04899K

Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach
journal, December 2014

  • Lu, Jun; Zhan, Chun; Wu, Tianpin
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6693

First Evidence of Manganese–Nickel Segregation and Densification upon Cycling in Li-Rich Layered Oxides for Lithium Batteries
journal, July 2013

  • Boulineau, Adrien; Simonin, Loïc; Colin, Jean-François
  • Nano Letters, Vol. 13, Issue 8
  • DOI: 10.1021/nl4019275

Enhanced rate performance of carbon-coated LiNi0.5Mn1.5O4 cathode material for lithium ion batteries
journal, April 2011


Nanostructured high-energy cathode materials for advanced lithium batteries
journal, October 2012

  • Sun, Yang-Kook; Chen, Zonghai; Noh, Hyung-Joo
  • Nature Materials, Vol. 11, Issue 11
  • DOI: 10.1038/nmat3435

Ultrathin Direct Atomic Layer Deposition on Composite Electrodes for Highly Durable and Safe Li-Ion Batteries
journal, April 2010

  • Jung, Yoon Seok; Cavanagh, Andrew S.; Riley, Leah A.
  • Advanced Materials, Vol. 22, Issue 19
  • DOI: 10.1002/adma.200903951

Ultrathin Coatings on Nano-LiCoO2 for Li-Ion Vehicular Applications
journal, February 2011

  • Scott, Isaac D.; Jung, Yoon Seok; Cavanagh, Andrew S.
  • Nano Letters, Vol. 11, Issue 2, p. 414-418
  • DOI: 10.1021/nl1030198

Challenges for rechargeable batteries
journal, August 2011


Investigation of the Charge Compensation Mechanism on the Electrochemically Li-Ion Deintercalated Li 1 - x Co 1/3 Ni 1/3 Mn 1/3 O 2 Electrode System by Combination of Soft and Hard X-ray Absorption Spectroscopy
journal, December 2005

  • Yoon, Won-Sub; Balasubramanian, Mahalingam; Chung, Kyung Yoon
  • Journal of the American Chemical Society, Vol. 127, Issue 49
  • DOI: 10.1021/ja0530568

Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes
journal, January 1997

  • Peled, E.
  • Journal of The Electrochemical Society, Vol. 144, Issue 8
  • DOI: 10.1149/1.1837858

Synthesis and Electrochemical Properties of ZnO-Coated LiNi[sub 0.5]Mn[sub 1.5]O[sub 4] Spinel as 5 V Cathode Material for Lithium Secondary Batteries
journal, January 2002

  • Sun, Y. -K.; Lee, Y. -S.; Yoshio, M.
  • Electrochemical and Solid-State Letters, Vol. 5, Issue 5
  • DOI: 10.1149/1.1465375

Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries
journal, January 2013

  • Wei Seh, Zhi; Li, Weiyang; Cha, Judy J.
  • Nature Communications, Vol. 4, Article No. 1331
  • DOI: 10.1038/ncomms2327

High-Performance LiNi 0.5 Mn 1.5 O 4 Spinel Controlled by Mn 3+ Concentration and Site Disorder
journal, March 2012


Insight into the Atomic Structure of High-Voltage Spinel LiNi 0.5 Mn 1.5 O 4 Cathode Material in the First Cycle
journal, December 2014

  • Lin, Mingxiang; Ben, Liubin; Sun, Yang
  • Chemistry of Materials, Vol. 27, Issue 1
  • DOI: 10.1021/cm503972a

Effect of Surface Modification on Nano-Structured LiNi 0.5 Mn 1.5 O 4 Spinel Materials
journal, July 2015

  • Cho, Hyung-Man; Chen, Michael Vincent; MacRae, Alex C.
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 30
  • DOI: 10.1021/acsami.5b01392

Corrosion/Fragmentation of Layered Composite Cathode and Related Capacity/Voltage Fading during Cycling Process
journal, July 2013

  • Zheng, Jianming; Gu, Meng; Xiao, Jie
  • Nano Letters, Vol. 13, Issue 8
  • DOI: 10.1021/nl401849t

SnO2 coated carbon cloth with surface modification as Na-ion battery anode
journal, September 2015


Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Synthesis and Electrochemistry of LiNi[sub x]Mn[sub 2−x]O[sub 4]
journal, January 1997

  • Zhong, Qiming
  • Journal of The Electrochemical Society, Vol. 144, Issue 1
  • DOI: 10.1149/1.1837386

Effects of Coating with Gold on the Performance of Nanosized LiNi[sub 0.5]Mn[sub 1.5]O[sub 4] for Lithium Batteries
journal, January 2007

  • Arrebola, J.; Caballero, A.; Hernán, L.
  • Journal of The Electrochemical Society, Vol. 154, Issue 3
  • DOI: 10.1149/1.2426799

AlF3 coating of LiNi0.5Mn1.5O4 for high-performance Li-ion batteries
journal, September 2011


Atomic Layer Deposition: An Overview
journal, January 2010

  • George, Steven M.
  • Chemical Reviews, Vol. 110, Issue 1, p. 111-131
  • DOI: 10.1021/cr900056b

Nonequilibrium Structural Dynamics of Nanoparticles in LiNi 1/2 Mn 3/2 O 4 Cathode under Operando Conditions
journal, August 2014

  • Singer, Andrej; Ulvestad, Andrew; Cho, Hyung-Man
  • Nano Letters, Vol. 14, Issue 9
  • DOI: 10.1021/nl502332b

Comparative Study of LiNi 0.5 Mn 1.5 O 4 - δ and LiNi 0.5 Mn 1.5 O 4 Cathodes Having Two Crystallographic Structures:  Fdm and P 4 3 32
journal, March 2004

  • Kim, J. -H.; Myung, S. -T.; Yoon, C. S.
  • Chemistry of Materials, Vol. 16, Issue 5
  • DOI: 10.1021/cm035050s

Surface Chemistry Consequences of Mg-Based Coatings on LiNi 0.5 Mn 1.5 O 4 Electrode Materials upon Operation at High Voltage
journal, May 2014

  • Alva, Gabriela; Kim, Chunjoong; Yi, Tanghong
  • The Journal of Physical Chemistry C, Vol. 118, Issue 20
  • DOI: 10.1021/jp5003148

High-energy cathode material for long-life and safe lithium batteries
journal, March 2009

  • Sun, Yang-Kook; Myung, Seung-Taek; Park, Byung-Chun
  • Nature Materials, Vol. 8, Issue 4
  • DOI: 10.1038/nmat2418

A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes
journal, February 2014


Adverse Effect of Ag Treatment on the Electrochemical Performance of the 5 V Nanometric Spinel LiNi[sub 0.5]Mn[sub 1.5]O[sub 4] in Lithium Cells
journal, January 2005

  • Arrebola, J.; Caballero, A.; Hernán, L.
  • Electrochemical and Solid-State Letters, Vol. 8, Issue 6
  • DOI: 10.1149/1.1911877

The Formation Mechanism of Fluorescent Metal Complexes at the Li x Ni 0.5 Mn 1.5 O 4−δ /Carbonate Ester Electrolyte Interface
journal, March 2015

  • Jarry, Angélique; Gottis, Sébastien; Yu, Young-Sang
  • Journal of the American Chemical Society, Vol. 137, Issue 10
  • DOI: 10.1021/ja5116698

Emerging Applications of Atomic Layer Deposition for Lithium-Ion Battery Studies
journal, June 2012

  • Meng, Xiangbo; Yang, Xiao-Qing; Sun, Xueliang
  • Advanced Materials, Vol. 24, Issue 27
  • DOI: 10.1002/adma.201200397

Understanding Transition-Metal Dissolution Behavior in LiNi 0.5 Mn 1.5 O 4 High-Voltage Spinel for Lithium Ion Batteries
journal, July 2013

  • Pieczonka, Nicholas P. W.; Liu, Zhongyi; Lu, Peng
  • The Journal of Physical Chemistry C, Vol. 117, Issue 31
  • DOI: 10.1021/jp405158m

A perspective on electrical energy storage
journal, December 2014

  • Goodenough, John B.; Manthiram, Arumugam
  • MRS Communications, Vol. 4, Issue 4
  • DOI: 10.1557/mrc.2014.36

A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes
journal, May 2012

  • Liu, Nian; Wu, Hui; McDowell, Matthew T.
  • Nano Letters, Vol. 12, Issue 6
  • DOI: 10.1021/nl3014814

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries
journal, March 2014

  • Lin, Feng; Markus, Isaac M.; Nordlund, Dennis
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4529

Phase evolution for conversion reaction electrodes in lithium-ion batteries
journal, February 2014

  • Lin, Feng; Nordlund, Dennis; Weng, Tsu-Chien
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4358

Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy
journal, October 2013

  • Liu, Xiaosong; Wang, Dongdong; Liu, Gao
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3568