skip to main content

DOE PAGESDOE PAGES

Title: 13C Metabolic Flux Analysis for Systematic Metabolic Engineering of S. cerevisiae for Overproduction of Fatty Acids

Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here, we used flux-based modeling approaches to improve yields of fatty acids in Saccharomyces cerevisiae. We combined 13C labeling data with comprehensive genome-scale models to shed light onto microbial metabolism and improve metabolic engineering efforts. We concentrated on studying the balance of acetyl-CoA, a precursor metabolite for the biosynthesis of fatty acids. A genome-wide acetyl-CoA balance study showed ATP citrate lyase from Yarrowia lipolytica as a robust source of cytoplasmic acetyl-CoA and malate synthase as a desirable target for downregulation in terms of acetyl-CoA consumption. These genetic modifications were applied to S. cerevisiae WRY2, a strain that is capable of producing 460 mg/L of free fatty acids. With the addition of ATP citrate lyase and downregulation of malate synthase, the engineered strain produced 26% more free fatty acids. Further increases in free fatty acid production of 33% were obtained by knocking out the cytoplasmic glycerol-3-phosphate dehydrogenase, which flux analysis had shown was competing for carbon flux upstream with the carbon flux through the acetyl-CoA production pathway in the cytoplasm. In total, the genetic interventions applied in this work increased fatty acid production by ~70%.
Authors:
 [1] ;  [2] ;  [2] ;  [3] ;  [2] ;  [2] ;  [2] ;  [4] ;  [5] ;  [2]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Indian Inst. of Technology (IIT), Kharagpur (India). School of Energy Science and Engineering
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States)
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani (Thailand)
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engineering
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engineering; Univ. of California, Berkeley, CA (United States). Dept. of Bioengineering; Technical Univ. of Denmark, Horsholm (Denmark). Novo Nordisk Foundation Center for Biosustainability
Publication Date:
Grant/Contract Number:
AC02-05CH11231
Type:
Accepted Manuscript
Journal Name:
Frontiers in Bioengineering and Biotechnology
Additional Journal Information:
Journal Volume: 4; Journal ID: ISSN 2296-4185
Publisher:
Frontiers Research Foundation
Research Org:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; flux analysis; 13C metabolic flux analysis; -omics data; predictive biology; metabolic engineering
OSTI Identifier:
1393590