skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Characterization of the acoustic field generated by a horn shaped ultrasonic transducer

Abstract

A horn shaped Langevin ultrasonic transducer used in a single axis levitator was characterized to better understand the role of the acoustic profile in establishing stable traps. The method of characterization included acoustic beam profiling performed by raster scanning an ultrasonic microphone as well as finite element analysis of the horn and its interface with the surrounding air volume. The results of the model are in good agreement with measurements and demonstrate the validity of the approach for both near and far field analysis. Our results show that this style of transducer produces a strong acoustic beam with a total divergence angle of 10 degrees, a nearfield point close to the transducer surface and a virtual sound source. These are desirable characteristics for a sound source used for acoustic trapping experiments.

Authors:
 [1]; ORCiD logo [2];  [3]; ORCiD logo [4];  [5];  [2];  [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS). X-ray Science Div.
  2. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS). Engineering Support Div.
  3. Georgia Inst. of Technology, Atlanta, GA (United States)
  4. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS). X-ray Science Div.; Materials Development Inc., Arlington Heights, IL (United States)
  5. Materials Development Inc., Arlington Heights, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1393538
Alternate Identifier(s):
OSTI ID: 1379997
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 111; Journal Issue: 10; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Hu, B., Lerch, J. E., Chavan, A. H., Weber, J. K. R., Tamalonis, A., Suthar, K. J., and DiChiara, A. D. Characterization of the acoustic field generated by a horn shaped ultrasonic transducer. United States: N. p., 2017. Web. doi:10.1063/1.5002103.
Hu, B., Lerch, J. E., Chavan, A. H., Weber, J. K. R., Tamalonis, A., Suthar, K. J., & DiChiara, A. D. Characterization of the acoustic field generated by a horn shaped ultrasonic transducer. United States. doi:10.1063/1.5002103.
Hu, B., Lerch, J. E., Chavan, A. H., Weber, J. K. R., Tamalonis, A., Suthar, K. J., and DiChiara, A. D. Mon . "Characterization of the acoustic field generated by a horn shaped ultrasonic transducer". United States. doi:10.1063/1.5002103. https://www.osti.gov/servlets/purl/1393538.
@article{osti_1393538,
title = {Characterization of the acoustic field generated by a horn shaped ultrasonic transducer},
author = {Hu, B. and Lerch, J. E. and Chavan, A. H. and Weber, J. K. R. and Tamalonis, A. and Suthar, K. J. and DiChiara, A. D.},
abstractNote = {A horn shaped Langevin ultrasonic transducer used in a single axis levitator was characterized to better understand the role of the acoustic profile in establishing stable traps. The method of characterization included acoustic beam profiling performed by raster scanning an ultrasonic microphone as well as finite element analysis of the horn and its interface with the surrounding air volume. The results of the model are in good agreement with measurements and demonstrate the validity of the approach for both near and far field analysis. Our results show that this style of transducer produces a strong acoustic beam with a total divergence angle of 10 degrees, a nearfield point close to the transducer surface and a virtual sound source. These are desirable characteristics for a sound source used for acoustic trapping experiments.},
doi = {10.1063/1.5002103},
journal = {Applied Physics Letters},
number = 10,
volume = 111,
place = {United States},
year = {2017},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Holographic acoustic elements for manipulation of levitated objects
journal, October 2015

  • Marzo, Asier; Seah, Sue Ann; Drinkwater, Bruce W.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9661

Amorphization of Molecular Liquids of Pharmaceutical Drugs by Acoustic Levitation
journal, August 2011


On the acoustic levitation stability behaviour of spherical and ellipsoidal particles
journal, August 2012

  • Foresti, D.; Nabavi, M.; Poulikakos, D.
  • Journal of Fluid Mechanics, Vol. 709
  • DOI: 10.1017/jfm.2012.350

Review of cell and particle trapping in microfluidic systems
journal, September 2009


Experimental and numerical characterization of the sound pressure in standing wave acoustic levitators
journal, January 2014

  • Stindt, A.; Andrade, M. A. B.; Albrecht, M.
  • Review of Scientific Instruments, Vol. 85, Issue 1
  • DOI: 10.1063/1.4861197

Acoustic Tractor Beam
journal, April 2014


Acoustic levitation: recent developments and emerging opportunities in biomaterials research
journal, October 2011

  • Weber, Richard J. K.; Benmore, Chris J.; Tumber, Sonia K.
  • European Biophysics Journal, Vol. 41, Issue 4
  • DOI: 10.1007/s00249-011-0767-3

Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature
journal, May 2016

  • Tsujino, Soichiro; Tomizaki, Takashi
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep25558

Experimental determination of the dynamics of an acoustically levitated sphere
journal, November 2014

  • Pérez, Nicolás; Andrade, Marco A. B.; Canetti, Rafael
  • Journal of Applied Physics, Vol. 116, Issue 18
  • DOI: 10.1063/1.4901579

Suspended by sound
journal, October 2001


Acoustophoretic Contactless Elevation, Orbital Transport and Spinning of Matter in Air
journal, January 2014


Analysis of the particle stability in a new designed ultrasonic levitation device
journal, October 2011

  • Baer, Sebastian; Andrade, Marco A. B.; Esen, Cemal
  • Review of Scientific Instruments, Vol. 82, Issue 10
  • DOI: 10.1063/1.3652976

Study on Internal Flow and Surface Deformation of Large Droplet Levitated by Ultrasonic Wave
journal, September 2006

  • Abe, Y.; Hyuga, D.; Yamada, S.
  • Annals of the New York Academy of Sciences, Vol. 1077, Issue 1
  • DOI: 10.1196/annals.1362.050

Holograms for acoustics
journal, September 2016


Acoustic levitator for structure measurements on low temperature liquid droplets
journal, August 2009

  • Weber, J. K. R.; Rey, C. A.; Neuefeind, J.
  • Review of Scientific Instruments, Vol. 80, Issue 8
  • DOI: 10.1063/1.3196177

Electrostatic trapping of ammonia molecules
journal, August 2000

  • Bethlem, Hendrick L.; Berden, Giel; Crompvoets, Floris M. H.
  • Nature, Vol. 406, Issue 6795
  • DOI: 10.1038/35020030

Standing‐wave acoustic trap for nonintrusive positioning of microparticles
journal, October 1995

  • Hertz, H. M.
  • Journal of Applied Physics, Vol. 78, Issue 8, p. 4845-4849
  • DOI: 10.1063/1.359770

Acoustic Standing-Wave Field for Manipulation in Air
journal, May 2008

  • Kozuka, Teruyuki; Yasui, Kyuichi; Tuziuti, Toru
  • Japanese Journal of Applied Physics, Vol. 47, Issue 5
  • DOI: 10.1143/JJAP.47.4336

Matrix method for acoustic levitation simulation
journal, August 2011

  • Andrade, Marco A. B.; Perez, N.; Buiochi, F.
  • IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 58, Issue 8
  • DOI: 10.1109/TUFFC.2011.1995

Finite element analysis and optimization of a single-axis acoustic levitator
journal, February 2010

  • Andrade, M. A. B.; Buiochi, F.; Adamowski, J. C.
  • IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 57, Issue 2
  • DOI: 10.1109/TUFFC.2010.1427

Optical trapping and manipulation of nanostructures
journal, November 2013

  • Maragò, Onofrio M.; Jones, Philip H.; Gucciardi, Pietro G.
  • Nature Nanotechnology, Vol. 8, Issue 11
  • DOI: 10.1038/nnano.2013.208

Experimental study of the oscillation of spheres in an acoustic levitator
journal, October 2014

  • Andrade, Marco A. B.; Pérez, Nicolás; Adamowski, Julio C.
  • The Journal of the Acoustical Society of America, Vol. 136, Issue 4
  • DOI: 10.1121/1.4893905

Non-contact handling in microassembly: Acoustical levitation
journal, October 2005