skip to main content

DOE PAGESDOE PAGES

Title: Global Analysis of Perovskite Photophysics Reveals Importance of Geminate Pathways

Hybrid organic-inorganic perovskites demonstrate desirable photophysical behaviors and promising applications from efficient photovoltaics to lasing, but the fundamental nature of excited state species is still under debate. We also collected time-resolved photoluminescence of single-crystal nanoplates of methylammonium lead iodide perovskite (MAPbI3), with excitation over a range of fluences and repetition rates, to provide a more complete photophysical picture. A fundamentally different way of simulating the photophysics is developed that relies on unnormalized decays, global analysis over a large array of conditions, and inclusion of steady-state behavior; these details are critical to capturing observed behaviors. These additional constraints require inclusion of spatially-correlated pairs, along with free carriers and traps, demonstrating the importance of our comprehensive analysis. Modeling geminate and non-geminate pathways shows geminate processes are dominant at high carrier densities and early times. This combination of data and simulation provides a detailed picture of perovskite photophysics across multiple excitation regimes that was not previously available.
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ; ORCiD logo [1] ;  [1] ; ORCiD logo [1]
  1. Univ. of Wisconsin, Madison, WI (United States). Dept. of Chemistry
Publication Date:
Grant/Contract Number:
FG02-09ER46664; SC0002162
Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 121; Journal Issue: 2; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Research Org:
Univ. of Wisconsin, Madison, WI (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); USDOE Chicago Operations Office (CO)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
OSTI Identifier:
1393446