skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In situ investigation on ultrafast oxygen evolution reactions of water splitting in proton exchange membrane electrolyzer cells

Abstract

Visualization investigation the oxygen bubble evolution and dynamics reveals the real phenomena inside an operating proton exchange membrane electrolyzer cell.

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1];  [1];  [2];  [3];  [4];  [5];  [5]; ORCiD logo [6]; ORCiD logo [1]
  1. Univ. of Tennessee, Knoxville, Tullahoma, TN (United States). Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences and Center for Nanophase Materials Science Divisions
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Energy and Transportation Sciences Division
  5. National Renewable Energy Lab. (NREL), Golden, CO (United States). Materials and Chemical Science and Technolog
  6. National Renewable Energy Lab. (NREL), Golden, CO (United States). Mechanical and Thermal Engineering Sciences
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1393373
Alternate Identifier(s):
OSTI ID: 1435301
Report Number(s):
NREL/JA-5900-70048
Journal ID: ISSN 2050-7488; JMCAET
Grant/Contract Number:  
AC36-08GO28308; FE0011585; AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Materials Chemistry. A
Additional Journal Information:
Journal Volume: 5; Journal Issue: 35; Journal ID: ISSN 2050-7488
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 25 ENERGY STORAGE; electrochemical devices; energy storage

Citation Formats

Mo, Jingke, Kang, Zhenye, Yang, Gaoqiang, Li, Yifan, Retterer, Scott T., Cullen, David A., Toops, Todd J., Bender, Guido, Pivovar, Bryan S., Green Jr, Johney B., and Zhang, Feng-Yuan. In situ investigation on ultrafast oxygen evolution reactions of water splitting in proton exchange membrane electrolyzer cells. United States: N. p., 2017. Web. doi:10.1039/C7TA05681H.
Mo, Jingke, Kang, Zhenye, Yang, Gaoqiang, Li, Yifan, Retterer, Scott T., Cullen, David A., Toops, Todd J., Bender, Guido, Pivovar, Bryan S., Green Jr, Johney B., & Zhang, Feng-Yuan. In situ investigation on ultrafast oxygen evolution reactions of water splitting in proton exchange membrane electrolyzer cells. United States. doi:10.1039/C7TA05681H.
Mo, Jingke, Kang, Zhenye, Yang, Gaoqiang, Li, Yifan, Retterer, Scott T., Cullen, David A., Toops, Todd J., Bender, Guido, Pivovar, Bryan S., Green Jr, Johney B., and Zhang, Feng-Yuan. Fri . "In situ investigation on ultrafast oxygen evolution reactions of water splitting in proton exchange membrane electrolyzer cells". United States. doi:10.1039/C7TA05681H. https://www.osti.gov/servlets/purl/1393373.
@article{osti_1393373,
title = {In situ investigation on ultrafast oxygen evolution reactions of water splitting in proton exchange membrane electrolyzer cells},
author = {Mo, Jingke and Kang, Zhenye and Yang, Gaoqiang and Li, Yifan and Retterer, Scott T. and Cullen, David A. and Toops, Todd J. and Bender, Guido and Pivovar, Bryan S. and Green Jr, Johney B. and Zhang, Feng-Yuan},
abstractNote = {Visualization investigation the oxygen bubble evolution and dynamics reveals the real phenomena inside an operating proton exchange membrane electrolyzer cell.},
doi = {10.1039/C7TA05681H},
journal = {Journal of Materials Chemistry. A},
number = 35,
volume = 5,
place = {United States},
year = {2017},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Schematic of a transparent proton exchange membrane electrolyzer cell coupled with a long-working distance high-speed, and micro-scale visualization system.

Save / Share:

Works referenced in this record:

Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers
journal, January 2014

  • Liu, Rui; Zheng, Zhi; Spurgeon, Joshua
  • Energy Environ. Sci., Vol. 7, Issue 8
  • DOI: 10.1039/C4EE00450G

Electrochemical investigation of stainless steel corrosion in a proton exchange membrane electrolyzer cell
journal, September 2015


Mask-Patterned Wet Etching of Thin Titanium Liquid/Gas Diffusion Layers for a PEMEC
journal, August 2015


Electrochemical activity of ruthenium and iridium based catalysts for oxygen evolution reaction
journal, January 2012


High performance robust F-doped tin oxide based oxygen evolution electro-catalysts for PEM based water electrolysis
journal, January 2013

  • Datta, Moni Kanchan; Kadakia, Karan; Velikokhatnyi, Oleg I.
  • Journal of Materials Chemistry A, Vol. 1, Issue 12, p. 4026-4037
  • DOI: 10.1039/c3ta01458d

Iridium–ruthenium single phase mixed oxides for oxygen evolution: Composition dependence of electrocatalytic activity
journal, May 2012


Band engineering of perovskite-type transition metal oxynitrides for photocatalytic overall water splitting
journal, January 2016

  • Pan, Chengsi; Takata, Tsuyoshi; Kumamoto, Kazunori
  • Journal of Materials Chemistry A, Vol. 4, Issue 12
  • DOI: 10.1039/C5TA10612E

Study of IrxRu1−xO2 oxides as anodic electrocatalysts for solid polymer electrolyte water electrolysis
journal, November 2009


Discovery of true electrochemical reactions for ultrahigh catalyst mass activity in water splitting
journal, November 2016


Investigation of a copper etching technique to fabricate metallic gas diffusion media
journal, September 2006

  • Zhang, Feng-Yuan; Prasad, Ajay K.; Advani, Suresh G.
  • Journal of Micromechanics and Microengineering, Vol. 16, Issue 11
  • DOI: 10.1088/0960-1317/16/11/N02

Additive manufacturing of liquid/gas diffusion layers for low-cost and high-efficiency hydrogen production
journal, January 2016


Investigation of thin/well-tunable liquid/gas diffusion layers exhibiting superior multifunctional performance in low-temperature electrolytic water splitting
journal, January 2017

  • Kang, Zhenye; Mo, Jingke; Yang, Gaoqiang
  • Energy & Environmental Science, Vol. 10, Issue 1
  • DOI: 10.1039/C6EE02368A

Additive manufactured bipolar plate for high-efficiency hydrogen production in proton exchange membrane electrolyzer cells
journal, May 2017


Nanostructured catalysts for electrochemical water splitting: current state and prospects
journal, January 2016

  • Li, Xiumin; Hao, Xiaogang; Abudula, Abuliti
  • Journal of Materials Chemistry A, Vol. 4, Issue 31
  • DOI: 10.1039/C6TA02334G

Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: opportunities and limitations
journal, January 2011

  • Esposito, Daniel V.; Chen, Jingguang G.
  • Energy & Environmental Science, Vol. 4, Issue 10
  • DOI: 10.1039/c1ee01851e

Performance of a metallic gas diffusion layer for PEM fuel cells
journal, January 2008


Mathematical modeling of high-pressure PEM water electrolysis
journal, November 2009

  • Grigoriev, S. A.; Kalinnikov, A. A.; Millet, P.
  • Journal of Applied Electrochemistry, Vol. 40, Issue 5
  • DOI: 10.1007/s10800-009-0031-z

A comparative technoeconomic analysis of renewable hydrogen production using solar energy
journal, January 2016

  • Shaner, Matthew R.; Atwater, Harry A.; Lewis, Nathan S.
  • Energy & Environmental Science, Vol. 9, Issue 7
  • DOI: 10.1039/C5EE02573G

In Situ Characterization of the Catalyst Layer in a Polymer Electrolyte Membrane Fuel Cell
journal, January 2007

  • Zhang, Feng-Yuan; Spernjak, Dusan; Prasad, Ajay K.
  • Journal of The Electrochemical Society, Vol. 154, Issue 11
  • DOI: 10.1149/1.2777987

Vertically Oriented Polymer Electrolyte Nanofiber Catalyst Support for Thin Film Proton-Exchange Membrane Fuel Cell Electrodes
journal, August 2015

  • Babu, S. Komini; Atkinson, Robert W.; Papandrew, Alexander B.
  • ChemElectroChem, Vol. 2, Issue 11
  • DOI: 10.1002/celc.201500232

Highly efficient high temperature electrolysis
journal, January 2008

  • Hauch, Anne; Ebbesen, Sune Dalgaard; Jensen, Søren Højgaard
  • Journal of Materials Chemistry, Vol. 18, Issue 20
  • DOI: 10.1039/b718822f

Rapid prototyping of electrolyzer flow field plates
journal, January 2016

  • Hudkins, Jesse R.; Wheeler, Danika G.; Peña, Bruno
  • Energy & Environmental Science, Vol. 9, Issue 11
  • DOI: 10.1039/C6EE01997H

Initial Performance and Durability of Ultra-Low Loaded NSTF Electrodes for PEM Electrolyzers
journal, January 2012

  • Debe, M. K.; Hendricks, S. M.; Vernstrom, G. D.
  • Journal of The Electrochemical Society, Vol. 159, Issue 6
  • DOI: 10.1149/2.065206jes

A New Class of Electrocatalysts for Hydrogen Production from Water Electrolysis: Metal Monolayers Supported on Low-Cost Transition Metal Carbides
journal, February 2012

  • Esposito, Daniel V.; Hunt, Sean T.; Kimmel, Yannick C.
  • Journal of the American Chemical Society, Vol. 134, Issue 6
  • DOI: 10.1021/ja208656v

Visualization of Liquid Water Transport in a PEFC
journal, January 2004

  • Yang, X. G.; Zhang, F. Y.; Lubawy, A. L.
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 11
  • DOI: 10.1149/1.1803051

Direct Visualization of Solid Electrolyte Interphase Formation in Lithium-Ion Batteries with In Situ Electrochemical Transmission Electron Microscopy
journal, July 2014

  • Unocic, Raymond R.; Sun, Xiao-Guang; Sacci, Robert L.
  • Microscopy and Microanalysis, Vol. 20, Issue 4
  • DOI: 10.1017/S1431927614012744

Just a Dream—or Future Reality?
journal, April 2009


Pure hydrogen production by PEM electrolysis for hydrogen energy
journal, February 2006


The Air/Platinum/Nafion Triple-Phase Boundary: Characteristics, Scaling, and Implications for Fuel Cells
journal, January 2004

  • O’Hayre, Ryan; Prinz, Fritz B.
  • Journal of The Electrochemical Society, Vol. 151, Issue 5
  • DOI: 10.1149/1.1701868

The fundamentals of bubble evolution
journal, January 1995


Bubble evolution on vertical electrodes under extreme current densities
journal, September 2005


Evaluation and calculation on the efficiency of a water electrolysis system for hydrogen production
journal, October 2010


Liquid Water Removal from a Polymer Electrolyte Fuel Cell
journal, January 2006

  • Zhang, F. Y.; Yang, X. G.; Wang, C. Y.
  • Journal of The Electrochemical Society, Vol. 153, Issue 2
  • DOI: 10.1149/1.2138675

Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis
journal, January 2015

  • Hong, Wesley T.; Risch, Marcel; Stoerzinger, Kelsey A.
  • Energy & Environmental Science, Vol. 8, Issue 5
  • DOI: 10.1039/C4EE03869J

Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell
journal, October 2015


Two-phase flow in a proton exchange membrane electrolyzer visualized in situ by simultaneous neutron radiography and optical imaging
journal, May 2013


A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting
journal, January 2016

  • Yan, Ya; Xia, Bao Yu; Zhao, Bin
  • Journal of Materials Chemistry A, Vol. 4, Issue 45
  • DOI: 10.1039/C6TA08075H

Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes
journal, January 2014

  • Sheng, Wenchao; Bivens, Adam P.; Myint, MyatNoeZin
  • Energy Environ. Sci., Vol. 7, Issue 5
  • DOI: 10.1039/C3EE43899F

PEM electrolysis for production of hydrogen from renewable energy sources
journal, May 2005


A comprehensive review on PEM water electrolysis
journal, April 2013

  • Carmo, Marcelo; Fritz, David L.; Mergel, Jürgen
  • International Journal of Hydrogen Energy, Vol. 38, Issue 12, p. 4901-4934
  • DOI: 10.1016/j.ijhydene.2013.01.151

Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy
journal, June 2015


3-Dimensional porous N-doped graphene foam as a non-precious catalyst for the oxygen reduction reaction
journal, January 2015

  • Zhou, Xuejun; Bai, Zhengyu; Wu, Mingjie
  • Journal of Materials Chemistry A, Vol. 3, Issue 7
  • DOI: 10.1039/C4TA06538G

Design and performance of a solid polymer electrolyte water electrolyzer
journal, February 1996


Numerical modeling of three-dimensional two-phase gas–liquid flow in the flow field plate of a PEM electrolysis cell
journal, April 2010


A selective and efficient electrocatalyst for carbon dioxide reduction
journal, January 2014

  • Lu, Qi; Rosen, Jonathan; Zhou, Yang
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4242

    Works referencing / citing this record:

    Hierarchically Structured Porous Transport Layers for Polymer Electrolyte Water Electrolysis
    journal, November 2019

    • Schuler, Tobias; Ciccone, Joseph M.; Krentscher, Bernd
    • Advanced Energy Materials, Vol. 10, Issue 2
    • DOI: 10.1002/aenm.201903216

    In situ mapping of activity distribution and oxygen evolution reaction in vanadium flow batteries
    journal, November 2019


    An ultrathin cobalt-based zeolitic imidazolate framework nanosheet array with a strong synergistic effect towards the efficient oxygen evolution reaction
    journal, January 2018

    • Cao, Junhui; Lei, Chaojun; Yang, Jian
    • Journal of Materials Chemistry A, Vol. 6, Issue 39
    • DOI: 10.1039/c8ta08337a

    Analytical electrolyzer enabling operando characterization of flow plates
    journal, July 2019

    • Wheeler, Danika G.; Virca, Carolyn N.; Berlinguette, Curtis P.
    • Review of Scientific Instruments, Vol. 90, Issue 7
    • DOI: 10.1063/1.5053600

    A Porous FeCuNi-Based Electrocatalyst Supported by Nickel Foam for Oxygen Evolution Reaction in Alkaline Conditions
    journal, January 2018

    • Dong, Yongzhi; Sun, Fengke; Li, Xi
    • Journal of The Electrochemical Society, Vol. 165, Issue 14
    • DOI: 10.1149/2.0061814jes

    Polymer Electrolyte Water Electrolysis: Correlating Porous Transport Layer Structural Properties and Performance: Part I. Tomographic Analysis of Morphology and Topology
    journal, January 2019

    • Schuler, Tobias; De Bruycker, Ruben; Schmidt, Thomas J.
    • Journal of The Electrochemical Society, Vol. 166, Issue 4
    • DOI: 10.1149/2.0561904jes

    Polymer Electrolyte Water Electrolysis: Correlating Performance and Porous Transport Layer Structure: Part II. Electrochemical Performance Analysis
    journal, January 2019

    • Schuler, Tobias; Schmidt, Thomas J.; Büchi, Felix N.
    • Journal of The Electrochemical Society, Vol. 166, Issue 10
    • DOI: 10.1149/2.1241908jes

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.