skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 3D-Printed Transparent Glass

Abstract

In this study, silica inks are developed, which may be 3D printed and thermally processed to produce optically transparent glass structures with sub-millimeter features in forms ranging from scaffolds to monoliths. The inks are composed of silica powder suspended in a liquid and are printed using direct ink writing. The printed structures are then dried and sintered at temperatures well below the silica melting point to form amorphous, solid, transparent glass structures. This technique enables the mold-free formation of transparent glass structures previously inaccessible using conventional glass fabrication processes.

Authors:
ORCiD logo [1];  [2];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [3];  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Univ. of Minnesota, Minneapolis, MN (United States). Department of Earth Sciences
  3. Oklahoma State Univ., Stillwater, OK (United States). School of Chemical Engineering
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1393335
Alternate Identifier(s):
OSTI ID: 1401788
Report Number(s):
LLNL-JRNL-720419
Journal ID: ISSN 0935-9648
Grant/Contract Number:  
AC52-07NA27344; 16-SI-003; LLNL-JRNL-720419
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Volume: 29; Journal Issue: 26; Journal ID: ISSN 0935-9648
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 3D printing; direct ink writing; glass; silica; sintering

Citation Formats

Nguyen, Du T., Meyers, Cameron, Yee, Timothy D., Dudukovic, Nikola A., Destino, Joel F., Zhu, Cheng, Duoss, Eric B., Baumann, Theodore F., Suratwala, Tayyab, Smay, James E., and Dylla-Spears, Rebecca. 3D-Printed Transparent Glass. United States: N. p., 2017. Web. doi:10.1002/adma.201701181.
Nguyen, Du T., Meyers, Cameron, Yee, Timothy D., Dudukovic, Nikola A., Destino, Joel F., Zhu, Cheng, Duoss, Eric B., Baumann, Theodore F., Suratwala, Tayyab, Smay, James E., & Dylla-Spears, Rebecca. 3D-Printed Transparent Glass. United States. doi:10.1002/adma.201701181.
Nguyen, Du T., Meyers, Cameron, Yee, Timothy D., Dudukovic, Nikola A., Destino, Joel F., Zhu, Cheng, Duoss, Eric B., Baumann, Theodore F., Suratwala, Tayyab, Smay, James E., and Dylla-Spears, Rebecca. Fri . "3D-Printed Transparent Glass". United States. doi:10.1002/adma.201701181. https://www.osti.gov/servlets/purl/1393335.
@article{osti_1393335,
title = {3D-Printed Transparent Glass},
author = {Nguyen, Du T. and Meyers, Cameron and Yee, Timothy D. and Dudukovic, Nikola A. and Destino, Joel F. and Zhu, Cheng and Duoss, Eric B. and Baumann, Theodore F. and Suratwala, Tayyab and Smay, James E. and Dylla-Spears, Rebecca},
abstractNote = {In this study, silica inks are developed, which may be 3D printed and thermally processed to produce optically transparent glass structures with sub-millimeter features in forms ranging from scaffolds to monoliths. The inks are composed of silica powder suspended in a liquid and are printed using direct ink writing. The printed structures are then dried and sintered at temperatures well below the silica melting point to form amorphous, solid, transparent glass structures. This technique enables the mold-free formation of transparent glass structures previously inaccessible using conventional glass fabrication processes.},
doi = {10.1002/adma.201701181},
journal = {Advanced Materials},
number = 26,
volume = 29,
place = {United States},
year = {2017},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 29 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives
journal, October 2011

  • Fu, Qiang; Saiz, Eduardo; Rahaman, Mohamed N.
  • Materials Science and Engineering: C, Vol. 31, Issue 7
  • DOI: 10.1016/j.msec.2011.04.022

Microfluidic Chips for Point-of-Care Immunodiagnostics
journal, May 2011

  • Gervais, Luc; de Rooij, Nico; Delamarche, Emmanuel
  • Advanced Materials, Vol. 23, Issue 24
  • DOI: 10.1002/adma.201100464

The past, present and potential for microfluidic reactor technology in chemical synthesis
journal, October 2013

  • Elvira, Katherine S.; i. Solvas, Xavier Casadevall; Wootton, Robert C. R.
  • Nature Chemistry, Vol. 5, Issue 11
  • DOI: 10.1038/nchem.1753

Additive Manufacturing of Glass
journal, October 2014

  • Luo, Junjie; Pan, Heng; Kinzel, Edward C.
  • Journal of Manufacturing Science and Engineering, Vol. 136, Issue 6
  • DOI: 10.1115/1.4028531

Bioinspired Strong and Highly Porous Glass Scaffolds
journal, February 2011

  • Fu, Qiang; Saiz, Eduardo; Tomsia, Antoni P.
  • Advanced Functional Materials, Vol. 21, Issue 6
  • DOI: 10.1002/adfm.201002030

Ultrafast Digital Printing toward 4D Shape Changing Materials
journal, December 2016


Recent advances in sol–gel synthesis of monolithic silica and silica-based glasses
journal, June 2013


Thixotropic rheology of concentrated alumina colloidal gels for solid freeform fabrication
journal, May 2011

  • Zhu, Cheng; Smay, James E.
  • Journal of Rheology, Vol. 55, Issue 3
  • DOI: 10.1122/1.3573828

Ultralight, ultrastiff mechanical metamaterials
journal, June 2014


The guide to glass 3D printing: developments, methods, diagnostics and results
journal, April 2011

  • Marchelli, Grant; Prabhakar, Renuka; Storti, Duane
  • Rapid Prototyping Journal, Vol. 17, Issue 3
  • DOI: 10.1108/13552541111124761

Additive manufacturing of polymer-derived ceramics
journal, December 2015


Directed Colloidal Assembly of 3D Periodic Structures
journal, September 2002


Liquid Glass: A Facile Soft Replication Method for Structuring Glass
journal, April 2016

  • Kotz, Frederik; Plewa, Klaus; Bauer, Werner
  • Advanced Materials, Vol. 28, Issue 23
  • DOI: 10.1002/adma.201506089

3D Printing of Shape Memory Polymers for Flexible Electronic Devices
journal, September 2015

  • Zarek, Matt; Layani, Michael; Cooperstein, Ido
  • Advanced Materials, Vol. 28, Issue 22
  • DOI: 10.1002/adma.201503132

Formation of cylindrical micro-lens array in fused silica glass using laser irradiations
conference, December 2013

  • Choi, Hun-Kook; Ahsan, Md. Shamim; Yoo, Dongyoon
  • SPIE Micro+Nano Materials, Devices, and Applications, SPIE Proceedings
  • DOI: 10.1117/12.2033772

Highly loaded UV curable nanosilica dispersions for rapid prototyping applications
journal, August 2009


Bioceramics: From Bone Regeneration to Cancer Nanomedicine
journal, October 2011

  • Vallet-Regí, María; Ruiz-Hernández, Eduardo
  • Advanced Materials, Vol. 23, Issue 44
  • DOI: 10.1002/adma.201101586

Photocurable Liquid Core-Fugitive Shell Printing of Optical Waveguides
journal, October 2011

  • Lorang, David J.; Tanaka, Douglas; Spadaccini, Christopher M.
  • Advanced Materials, Vol. 23, Issue 43
  • DOI: 10.1002/adma.201102411

Cellulose Nanocrystal Inks for 3D Printing of Textured Cellular Architectures
journal, February 2017

  • Siqueira, Gilberto; Kokkinis, Dimitri; Libanori, Rafael
  • Advanced Functional Materials, Vol. 27, Issue 12
  • DOI: 10.1002/adfm.201604619

Additive manufacturing of glass for optical applications
conference, April 2016

  • Luo, Junjie; Gilbert, Luke J.; Bristow, Douglas A.
  • SPIE LASE, SPIE Proceedings
  • DOI: 10.1117/12.2218137

Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods
journal, October 1999

  • Link, Stephan; El-Sayed, Mostafa A.
  • The Journal of Physical Chemistry B, Vol. 103, Issue 40
  • DOI: 10.1021/jp9917648

A 3D-printed, functionally graded soft robot powered by combustion
journal, July 2015


Active mixing of complex fluids at the microscale
journal, September 2015

  • Ober, Thomas J.; Foresti, Daniele; Lewis, Jennifer A.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 40
  • DOI: 10.1073/pnas.1509224112

Superhydrophilic and Underwater Superoleophobic Poly(sulfobetaine methacrylate)-Grafted Glass Fiber Filters for Oil–Water Separation
journal, June 2014

  • Liu, Qingsheng; Patel, Ankit A.; Liu, Lingyun
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 12
  • DOI: 10.1021/am502302g

Highly compressible 3D periodic graphene aerogel microlattices
journal, April 2015

  • Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7962

Direct Ink Writing of 3D Functional Materials
journal, November 2006


Self-Healing of Internal Damage in Synthetic Vascular Materials
journal, September 2010

  • Hamilton, Andrew R.; Sottos, Nancy R.; White, Scott R.
  • Advanced Materials, Vol. 22, Issue 45
  • DOI: 10.1002/adma.201002561

Additive Manufacturing of Optically Transparent Glass
journal, September 2015

  • Klein, John; Stern, Michael; Franchin, Giorgia
  • 3D Printing and Additive Manufacturing, Vol. 2, Issue 3
  • DOI: 10.1089/3dp.2015.0021

Three-Dimensional Printing of Elastomeric, Cellular Architectures with Negative Stiffness
journal, May 2014

  • Duoss, Eric B.; Weisgraber, Todd H.; Hearon, Keith
  • Advanced Functional Materials, Vol. 24, Issue 31
  • DOI: 10.1002/adfm.201400451

    Works referencing / citing this record:

    3D-printing of arsenic sulfide chalcogenide glasses
    journal, January 2019

    • Baudet, E.; Ledemi, Y.; Larochelle, P.
    • Optical Materials Express, Vol. 9, Issue 5
    • DOI: 10.1364/ome.9.002307

    3D-printing of arsenic sulfide chalcogenide glasses
    journal, January 2019

    • Baudet, E.; Ledemi, Y.; Larochelle, P.
    • Optical Materials Express, Vol. 9, Issue 5
    • DOI: 10.1364/ome.9.002307

    Compressive Response of Non-slender Octet Carbon Microlattices
    journal, July 2019