skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions

Abstract

The effects of hydrocarbon reactions and diamond precipitation on the internal structure and evolution of icy giant planets such as Neptune and Uranus have been discussed for more than three decades. Inside these celestial bodies, simple hydrocarbons such as methane, which are highly abundant in the atmospheres, are believed to undergo structural transitions that release hydrogen from deeper layers and may lead to compact stratified cores. Indeed, from the surface towards the core, the isentropes of Uranus and Neptune intersect a temperature–pressure regime in which methane first transforms into a mixture of hydrocarbon polymers, whereas, in deeper layers, a phase separation into diamond and hydrogen may be possible. Here in this paper, we show experimental evidence for this phase separation process obtained by in situ X-ray diffraction from polystyrene (C8H8) n samples dynamically compressed to conditions around 150 GPa and 5,000 K; these conditions resemble the environment around 10,000 km below the surfaces of Neptune and Uranus. Our findings demonstrate the necessity of high pressures for initiating carbon–hydrogen separation and imply that diamond precipitation may require pressures about ten times as high as previously indicated by static compression experiments. In conclusion, our results will inform mass–radius relationships of carbon-bearing exoplanets,more » provide constraints for their internal layer structure and improve evolutionary models of Uranus and Neptune, in which carbon–hydrogen separation could influence the convective heat transport.« less

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [4];  [5];  [6];  [5];  [5];  [7];  [5];  [5];  [8];  [5];  [9];  [5];  [10];  [11];  [12];  [2];  [13] more »;  [5];  [3];  [14] « less
  1. Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Univ. of California, Berkeley, CA (United States). Department of Physics; Technische Universitat Dresden (Germany). Institute of Solid State and Materials Physics
  2. Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany)
  3. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  4. Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Osaka University (Japan). Open and Transdisciplinary Research Institute
  5. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  6. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Technische Universitat Darmstadt (Germany). Institut fur Kernphysik
  7. University of Warwick, Coventry (United Kingdom). Centre for Fusion, Space and Astrophysics, Department of Physics
  8. SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of Michigan, Ann Arbor, MI (United States)
  9. SLAC National Accelerator Lab., Menlo Park, CA (United States); European XFEL GmbH, Schenefeld (Germany)
  10. GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany)
  11. Technische Universitat Darmstadt (Germany). Institut fur Kernphysik
  12. Univ. of California, Berkeley, CA (United States). Department of Physics
  13. SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States). Department of Physics
  14. Univ. of California, Berkeley, CA (United States). Department of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24); USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1393331
Alternate Identifier(s):
OSTI ID: 1476528
Report Number(s):
LLNL-JRNL-707514
Journal ID: ISSN 2397-3366; PII: 219
Grant/Contract Number:  
AC52-07NA27344; AC02-76SF00515; FG52-10NA29649; NA0001859; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Nature Astronomy
Additional Journal Information:
Journal Volume: 1; Journal Issue: 9; Journal ID: ISSN 2397-3366
Publisher:
Springer
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; Core processes; Giant planets; Phase transitions and critical phenomena

Citation Formats

Kraus, D., Vorberger, J., Pak, A., Hartley, N. J., Fletcher, L. B., Frydrych, S., Galtier, E., Gamboa, E. J., Gericke, D. O., Glenzer, S. H., Granados, E., MacDonald, M. J., MacKinnon, A. J., McBride, E. E., Nam, I., Neumayer, P., Roth, M., Saunders, A. M., Schuster, A. K., Sun, P., van Driel, T., Döppner, T., and Falcone, R. W. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions. United States: N. p., 2017. Web. doi:10.1038/s41550-017-0219-9.
Kraus, D., Vorberger, J., Pak, A., Hartley, N. J., Fletcher, L. B., Frydrych, S., Galtier, E., Gamboa, E. J., Gericke, D. O., Glenzer, S. H., Granados, E., MacDonald, M. J., MacKinnon, A. J., McBride, E. E., Nam, I., Neumayer, P., Roth, M., Saunders, A. M., Schuster, A. K., Sun, P., van Driel, T., Döppner, T., & Falcone, R. W. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions. United States. doi:10.1038/s41550-017-0219-9.
Kraus, D., Vorberger, J., Pak, A., Hartley, N. J., Fletcher, L. B., Frydrych, S., Galtier, E., Gamboa, E. J., Gericke, D. O., Glenzer, S. H., Granados, E., MacDonald, M. J., MacKinnon, A. J., McBride, E. E., Nam, I., Neumayer, P., Roth, M., Saunders, A. M., Schuster, A. K., Sun, P., van Driel, T., Döppner, T., and Falcone, R. W. Mon . "Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions". United States. doi:10.1038/s41550-017-0219-9. https://www.osti.gov/servlets/purl/1393331.
@article{osti_1393331,
title = {Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions},
author = {Kraus, D. and Vorberger, J. and Pak, A. and Hartley, N. J. and Fletcher, L. B. and Frydrych, S. and Galtier, E. and Gamboa, E. J. and Gericke, D. O. and Glenzer, S. H. and Granados, E. and MacDonald, M. J. and MacKinnon, A. J. and McBride, E. E. and Nam, I. and Neumayer, P. and Roth, M. and Saunders, A. M. and Schuster, A. K. and Sun, P. and van Driel, T. and Döppner, T. and Falcone, R. W.},
abstractNote = {The effects of hydrocarbon reactions and diamond precipitation on the internal structure and evolution of icy giant planets such as Neptune and Uranus have been discussed for more than three decades. Inside these celestial bodies, simple hydrocarbons such as methane, which are highly abundant in the atmospheres, are believed to undergo structural transitions that release hydrogen from deeper layers and may lead to compact stratified cores. Indeed, from the surface towards the core, the isentropes of Uranus and Neptune intersect a temperature–pressure regime in which methane first transforms into a mixture of hydrocarbon polymers, whereas, in deeper layers, a phase separation into diamond and hydrogen may be possible. Here in this paper, we show experimental evidence for this phase separation process obtained by in situ X-ray diffraction from polystyrene (C8H8) n samples dynamically compressed to conditions around 150 GPa and 5,000 K; these conditions resemble the environment around 10,000 km below the surfaces of Neptune and Uranus. Our findings demonstrate the necessity of high pressures for initiating carbon–hydrogen separation and imply that diamond precipitation may require pressures about ten times as high as previously indicated by static compression experiments. In conclusion, our results will inform mass–radius relationships of carbon-bearing exoplanets, provide constraints for their internal layer structure and improve evolutionary models of Uranus and Neptune, in which carbon–hydrogen separation could influence the convective heat transport.},
doi = {10.1038/s41550-017-0219-9},
journal = {Nature Astronomy},
number = 9,
volume = 1,
place = {United States},
year = {2017},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

HELIOS-CR – A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling
journal, May 2006

  • MacFarlane, J. J.; Golovkin, I. E.; Woodruff, P. R.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 99, Issue 1-3
  • DOI: 10.1016/j.jqsrt.2005.05.031

Decomposition of hydrocarbons to hydrogen and carbon
journal, May 2009

  • Ahmed, Shakeel; Aitani, Abdullah; Rahman, Faizur
  • Applied Catalysis A: General, Vol. 359, Issue 1-2, p. 1-24
  • DOI: 10.1016/j.apcata.2009.02.038

Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility
journal, November 2004

  • Celliers, P. M.; Bradley, D. K.; Collins, G. W.
  • Review of Scientific Instruments, Vol. 75, Issue 11
  • DOI: 10.1063/1.1807008

Interior Structure of Neptune: Comparison with Uranus
journal, August 1991


Matter under extreme conditions experiments at the Linac Coherent Light Source
journal, April 2016

  • Glenzer, S. H.; Fletcher, L. B.; Galtier, E.
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 49, Issue 9
  • DOI: 10.1088/0953-4075/49/9/092001

The ice layer in Uranus and Neptune—diamonds in the sky?
journal, July 1981


High-precision measurements of the equation of state of hydrocarbons at 1–10 Mbar using laser-driven shock waves
journal, May 2010

  • Barrios, M. A.; Hicks, D. G.; Boehly, T. R.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3358144

Interiors of Giant Planets Inside and Outside the Solar System
journal, October 1999


Laser interferometer for measuring high velocities of any reflecting surface
journal, November 1972

  • Barker, L. M.; Hollenbach, R. E.
  • Journal of Applied Physics, Vol. 43, Issue 11
  • DOI: 10.1063/1.1660986

Polymerization and diamond formation from melting methane and their implications in ice layer of giant planets
journal, May 2009

  • Hirai, Hisako; Konagai, Keisuke; Kawamura, Taro
  • Physics of the Earth and Planetary Interiors, Vol. 174, Issue 1-4
  • DOI: 10.1016/j.pepi.2008.06.011

Diffusion of hydrogen from a microwave plasma into diamond and its interaction with dopants and defects
journal, March 2002


The properties and applications of nanodiamonds
journal, December 2011

  • Mochalin, Vadym N.; Shenderova, Olga; Ho, Dean
  • Nature Nanotechnology, Vol. 7, Issue 1
  • DOI: 10.1038/nnano.2011.209

H/He demixing and the cooling behavior of Saturn
journal, March 2016


Shock compression of liquid carbon monoxide and methane to 90 GPa (900 kbar)
journal, September 1981

  • Nellis, W. J.; Ree, F. H.; van Thiel, M.
  • The Journal of Chemical Physics, Vol. 75, Issue 6
  • DOI: 10.1063/1.442401

CSPAD-140k: A versatile detector for LCLS experiments
journal, August 2013

  • Herrmann, Sven; Boutet, Sébastien; Duda, Brian
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 718
  • DOI: 10.1016/j.nima.2013.01.057

Chemical processes in the deep interior of Uranus
journal, February 2011

  • Chau, Ricky; Hamel, Sebastien; Nellis, William J.
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1198

Uranus evolution models with simple thermal boundary layers
journal, September 2016


Electrical conductivities of methane, benzene, and polybutene shock compressed to 60 GPa (600 kbar)
journal, July 2001

  • Nellis, W. J.; Hamilton, D. C.; Mitchell, A. C.
  • The Journal of Chemical Physics, Vol. 115, Issue 2
  • DOI: 10.1063/1.1379537

    Works referencing / citing this record:

    Evidence for Crystalline Structure in Dynamically-Compressed Polyethylene up to 200 GPa
    journal, March 2019


    High Pressure Hydrocarbons Revisited: From van der Waals Compounds to Diamond
    journal, May 2019


    Density response to short-pulse excitation in gold
    journal, March 2019

    • Ndione, P. D.; Weber, S. T.; Rethfeld, B.
    • Contributions to Plasma Physics, Vol. 59, Issue 4-5
    • DOI: 10.1002/ctpp.201800186

    Density response to short-pulse excitation in gold
    journal, March 2019

    • Ndione, P. D.; Weber, S. T.; Rethfeld, B.
    • Contributions to Plasma Physics, Vol. 59, Issue 4-5
    • DOI: 10.1002/ctpp.201800186

    Evidence for Crystalline Structure in Dynamically-Compressed Polyethylene up to 200 GPa
    journal, March 2019


    High Pressure Hydrocarbons Revisited: From van der Waals Compounds to Diamond
    journal, May 2019