skip to main content


Title: Key factors for determining groundwater impacts due to leakage from geologic carbon sequestration reservoirs

The National Risk Assessment Partnership (NRAP) is developing a science-based toolset for the analysis of potential impacts to groundwater chemistry from CO 2 injection ( The toolset adopts a stochastic approach in which predictions address uncertainties in shallow groundwater and leakage scenarios. It is derived from detailed physics and chemistry simulation results that are used to train more computationally efficient models, referred to here as reduced-order models (ROMs), for each component system. In particular, these tools can be used to help regulators and operators understand the expected sizes and longevity of plumes in pH, TDS, and dissolved metals that could result from a leakage of brine and/or CO 2 from a storage reservoir into aquifers. This information can inform, for example, decisions on monitoring strategies that are both effective and efficient. We have used this approach to develop predictive reduced-order models for two common types of reservoirs, but the approach could be used to develop a model for a specific aquifer or other common types of aquifers. In this paper we describe potential impacts to groundwater quality due to CO 2 and brine leakage, discuss an approach to calculate thresholds under which no impact to groundwater occurs, describe the timemore » scale for impact on groundwater, and discuss the probability of detecting a groundwater plume should leakage occur. To facilitate this, multi-phase flow and reactive transport simulations and emulations were developed for two classes of aquifers, considering uncertainty in leakage source terms and aquifer hydrogeology. We targeted an unconfined fractured carbonate aquifer based on the Edwards aquifer in Texas and a confined alluvium aquifer based on the High Plains Aquifer in Kansas, which share characteristics typical of many drinking water aquifers in the United States. The hypothetical leakage scenarios centered on the notion that wellbores are the most likely conduits for brine and CO 2 leaks. Leakage uncertainty was based on hypothetical injection of CO 2 for 50 years at a rate of 5 million tons per year into a depleted oil/gas reservoir with high permeability and, one or more wells provided leakage pathways from the storage reservoir to the overlying aquifer. This scenario corresponds to a storage site with historical oil/gas production and some poorly completed legacy wells that went undetected through site evaluation, operations, and post-closure. For the aquifer systems and leakage scenarios studied here, CO 2 and brine leakage are likely to drive pH below and increase total dissolved solids (TDS) above the “no-impact thresholds;” and the subsequent plumes, although small, are likely to persist for long periods of time in the absence of remediation. In these scenarios, however, risk to human health may not be significant for two reasons. First, our simulated plume volumes are much smaller than the average inter-well spacing for these representative aquifers, so the impacted groundwater would be unlikely to be pumped for drinking water. Second, even within the impacted plume volumes little water exceeds the primary maximum contamination levels.« less
ORCiD logo [1] ;  [2] ;  [1] ;  [2] ;  [1] ;  [1] ;  [3] ;  [3]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  3. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
Report Number(s):
PNNL-SA-103266; LLNL-JRNL-687000
Journal ID: ISSN 1750-5836; AA9010200
Grant/Contract Number:
AC05-76RL01830; AC52-07NA27344
Published Article
Journal Name:
International Journal of Greenhouse Gas Control
Additional Journal Information:
Journal Volume: 29; Journal Issue: C; Journal ID: ISSN 1750-5836
Research Org:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org:
USDOE Office of Fossil Energy (FE)
Country of Publication:
United States
58 GEOSCIENCES; 54 ENVIRONMENTAL SCIENCES; carbon storage; CO2 and brine leakage; groundwater impacts; reactive-transport simulations; reduced-order models; CO2 and brine leakage
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1168885; OSTI ID: 1321439