skip to main content


Title: The asymmetric impact of global warming on US drought types and distributions in a large ensemble of 97 hydro-climatic simulations

Projection of future drought is often involved large uncertainties from climate models, emission scenarios as well as drought definitions. In this study, we investigate changes in future droughts in the conterminous United States based on 97 1/8 degree hydro-climate model projections. Instead of focusing on a specific drought type, we investigate changes in meteorological, agricultural, and hydrological drought as well as the concurrences. Agricultural and hydrological droughts are projected to become more frequent with increase in global mean temperature, while less meteorological drought is expected. Changes in drought intensity scale linearly with global temperature rises under RCP8.5 scenario, indicating the potential feasibility to derive future drought severity given certain global warming amount under this scenario. Changing pattern of concurrent droughts generally follows that of agricultural and hydrological droughts. Under the 1.5 °C warming target as advocated in recent Paris agreement, several hot spot regions experiencing highest droughts are identified. Extreme droughts show similar patterns but with much larger magnitude than the climatology. In conclusion, this study highlights the distinct response of droughts of various types to global warming and the asymmetric impact of global warming on drought distribution resulting in a much stronger influence on extreme drought than on meanmore » drought.« less
 [1] ;  [2] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Xi'an Univ. of Technology, Xi'an (China). State Key Lab. Base of Eco-Hydraulic Engineering in Arid Area
  2. Pacific Northwest National Lab., College Park, MD (United States). Joint Global Research Institute
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 7; Journal Issue: 1; Journal ID: ISSN 2045-2322
Nature Publishing Group
Research Org:
Pacific Northwest National Laboratory, College Park, MD (United States). Joint Global Change Research Institute
Sponsoring Org:
Country of Publication:
United States
OSTI Identifier: