skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Alcohol Oxidation at Platinum–Gas and Platinum–Liquid Interfaces: The Effect of Platinum Nanoparticle Size, Water Coadsorption, and Alcohol Concentration

Abstract

Platinum nanoparticles size range from 1 to 8 nm deposited on mesoporous silica MCF-17 catalyzed alcohol oxidations were studied in the gas and liquid phases. Among methanol, ethanol, 2- propanol and 2-butanol reactions, the turnover frequency increased with Pt nanoparticle size for all the alcohols utilized. The activation energies for the oxidations were almost same among all alcohol species, but higher in the gas phase than those in the liquid phase. Water coadsorption poisoned the reaction in the gas phase, while it increased the reaction turnover rates in the liquid phase. Sum frequency generation (SFG) vibrational spectroscopy studies and DFT calculations revealed that the alcohol molecules pack horizontally on the metal surface in low concentrations and stand up in high concentrations, which affect the dissociation of β-hydrogen of the alcohols as the critical step in alcohol oxidations.

Authors:
ORCiD logo [1];  [1];  [1];  [2]; ORCiD logo [1];  [2]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1393219
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 121; Journal Issue: 13; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Tatsumi, Hironori, Liu, Fudong, Han, Hui-Ling, Carl, Lindsay M., Sapi, Andras, and Somorjai, Gabor A. Alcohol Oxidation at Platinum–Gas and Platinum–Liquid Interfaces: The Effect of Platinum Nanoparticle Size, Water Coadsorption, and Alcohol Concentration. United States: N. p., 2017. Web. https://doi.org/10.1021/acs.jpcc.7b01432.
Tatsumi, Hironori, Liu, Fudong, Han, Hui-Ling, Carl, Lindsay M., Sapi, Andras, & Somorjai, Gabor A. Alcohol Oxidation at Platinum–Gas and Platinum–Liquid Interfaces: The Effect of Platinum Nanoparticle Size, Water Coadsorption, and Alcohol Concentration. United States. https://doi.org/10.1021/acs.jpcc.7b01432
Tatsumi, Hironori, Liu, Fudong, Han, Hui-Ling, Carl, Lindsay M., Sapi, Andras, and Somorjai, Gabor A. Tue . "Alcohol Oxidation at Platinum–Gas and Platinum–Liquid Interfaces: The Effect of Platinum Nanoparticle Size, Water Coadsorption, and Alcohol Concentration". United States. https://doi.org/10.1021/acs.jpcc.7b01432. https://www.osti.gov/servlets/purl/1393219.
@article{osti_1393219,
title = {Alcohol Oxidation at Platinum–Gas and Platinum–Liquid Interfaces: The Effect of Platinum Nanoparticle Size, Water Coadsorption, and Alcohol Concentration},
author = {Tatsumi, Hironori and Liu, Fudong and Han, Hui-Ling and Carl, Lindsay M. and Sapi, Andras and Somorjai, Gabor A.},
abstractNote = {Platinum nanoparticles size range from 1 to 8 nm deposited on mesoporous silica MCF-17 catalyzed alcohol oxidations were studied in the gas and liquid phases. Among methanol, ethanol, 2- propanol and 2-butanol reactions, the turnover frequency increased with Pt nanoparticle size for all the alcohols utilized. The activation energies for the oxidations were almost same among all alcohol species, but higher in the gas phase than those in the liquid phase. Water coadsorption poisoned the reaction in the gas phase, while it increased the reaction turnover rates in the liquid phase. Sum frequency generation (SFG) vibrational spectroscopy studies and DFT calculations revealed that the alcohol molecules pack horizontally on the metal surface in low concentrations and stand up in high concentrations, which affect the dissociation of β-hydrogen of the alcohols as the critical step in alcohol oxidations.},
doi = {10.1021/acs.jpcc.7b01432},
journal = {Journal of Physical Chemistry. C},
number = 13,
volume = 121,
place = {United States},
year = {2017},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Au–Pd nanoalloys supported on Mg–Al mixed metal oxides as a multifunctional catalyst for solvent-free oxidation of benzyl alcohol
journal, January 2013

  • Feng, Junting; Ma, Chao; Miedziak, Peter J.
  • Dalton Transactions, Vol. 42, Issue 40
  • DOI: 10.1039/c3dt51855h

Selective oxidation of alcohols and aldehydes over supported metal nanoparticles
journal, January 2013

  • Davis, Sara E.; Ide, Matthew S.; Davis, Robert J.
  • Green Chem., Vol. 15, Issue 1
  • DOI: 10.1039/C2GC36441G

Recent advances in the heterogeneously catalysed aerobic selective oxidation of alcohols
journal, September 2010

  • Vinod, C. Prabhakaran; Wilson, Karen; Lee, Adam F.
  • Journal of Chemical Technology & Biotechnology, Vol. 86, Issue 2
  • DOI: 10.1002/jctb.2504

Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO 2 Catalysts
journal, January 2006


Oxidation of Alcohols with Molecular Oxygen on Solid Catalysts
journal, June 2004

  • Mallat, Tamas; Baiker, Alfons
  • Chemical Reviews, Vol. 104, Issue 6
  • DOI: 10.1021/cr0200116

Selective oxidation of alcohols by supported gold nanoparticles: recent advances
journal, January 2016

  • Sharma, Anuj S.; Kaur, Harjinder; Shah, Dipen
  • RSC Advances, Vol. 6, Issue 34
  • DOI: 10.1039/C5RA25646A

Heterogeneously Catalyzed Alcohol Oxidation for the Fine Chemical Industry
journal, August 2014

  • Ciriminna, Rosaria; Pandarus, Valerica; Béland, Francois
  • Organic Process Research & Development, Vol. 19, Issue 11
  • DOI: 10.1021/acs.oprd.5b00204

Cooperative Catalysis for Selective Alcohol Oxidation with Molecular Oxygen
journal, July 2016

  • Slot, Thierry K.; Eisenberg, David; van Noordenne, Dylan
  • Chemistry - A European Journal, Vol. 22, Issue 35
  • DOI: 10.1002/chem.201602964

Silver and oxide hybrids of catalysts during formaldehyde production
journal, June 2010


The Nature of the Molybdenum Surface in Iron Molybdate. The Active Phase in Selective Methanol Oxidation
journal, October 2014

  • Brookes, Catherine; Wells, Peter P.; Dimitratos, Nikolaos
  • The Journal of Physical Chemistry C, Vol. 118, Issue 45
  • DOI: 10.1021/jp5081753

Nanoporous Gold Catalysts for Selective Gas-Phase Oxidative Coupling of Methanol at Low Temperature
journal, January 2010


The selective oxidation of n-butanol to butyraldehyde by oxygen using stable Pt-based nanoparticulate catalysts: an efficient route for upgrading aqueous biobutanol
journal, January 2016

  • Gandarias, Inaki; Nowicka, Ewa; May, Blake J.
  • Catalysis Science & Technology, Vol. 6, Issue 12
  • DOI: 10.1039/C5CY01726B

Shape-Dependent Catalytic Oxidation of 2-Butanol over Pt Nanoparticles Supported on γ-Al 2 O 3
journal, December 2013

  • Mistry, H.; Behafarid, F.; Zhou, E.
  • ACS Catalysis, Vol. 4, Issue 1
  • DOI: 10.1021/cs400888n

Advances in Infrared Spectroscopy of Catalytic Solid–Liquid Interfaces: The Case of Selective Alcohol Oxidation
journal, June 2009


Effects of Nanoparticle Size and Metal/Support Interactions in Pt-Catalyzed Methanol Oxidation Reactions in Gas and Liquid Phases
journal, September 2014


Dramatically Different Kinetics and Mechanism at Solid/Liquid and Solid/Gas Interfaces for Catalytic Isopropanol Oxidation over Size-Controlled Platinum Nanoparticles
journal, July 2014

  • Wang, Hailiang; Sapi, Andras; Thompson, Christopher M.
  • Journal of the American Chemical Society, Vol. 136, Issue 29
  • DOI: 10.1021/ja505641r

Sum Frequency Generation Study of the Interfacial Layer in Liquid-Phase Heterogeneously Catalyzed Oxidation of 2-Propanol on Platinum: Effect of the Concentrations of Water and 2-Propanol at the Interface
journal, November 2013

  • Thompson, Christopher M.; Carl, Lindsay M.; Somorjai, Gabor A.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 49
  • DOI: 10.1021/jp408123u

Sub-10 nm Platinum Nanocrystals with Size and Shape Control: Catalytic Study for Ethylene and Pyrrole Hydrogenation
journal, April 2009

  • Tsung, Chia-Kuang; Kuhn, John N.; Huang, Wenyu
  • Journal of the American Chemical Society, Vol. 131, Issue 16
  • DOI: 10.1021/ja809936n

Microemulsion Templating of Siliceous Mesostructured Cellular Foams with Well-Defined Ultralarge Mesopores
journal, March 2000

  • Schmidt-Winkel, Patrick; Lukens,, Wayne W.; Yang, Peidong
  • Chemistry of Materials, Vol. 12, Issue 3
  • DOI: 10.1021/cm991097v

Pt Nanocrystals:  Shape Control and Langmuir−Blodgett Monolayer Formation
journal, January 2005

  • Song, Hyunjoon; Kim, Franklin; Connor, Stephen
  • The Journal of Physical Chemistry B, Vol. 109, Issue 1
  • DOI: 10.1021/jp0464775

Diffusion coefficients of nitrogen and oxygen in water
journal, January 1967

  • Ferrell, Ralph T.; Himmelblau, David M.
  • Journal of Chemical & Engineering Data, Vol. 12, Issue 1
  • DOI: 10.1021/je60032a036

Mechanism of Pd(OAc) 2 /DMSO-Catalyzed Aerobic Alcohol Oxidation:  Mass-Transfer-Limitation Effects and Catalyst Decomposition Pathways
journal, April 2006

  • Steinhoff, Bradley A.; Stahl, Shannon S.
  • Journal of the American Chemical Society, Vol. 128, Issue 13
  • DOI: 10.1021/ja057914b

Gas-Liquid Hydrodynamics and Mass Transfer in Aqueous Alcohol Solutions in a Split-Cylinder Airlift Reactor
journal, February 2011

  • Moraveji, M. K.; Sajjadi, B.; Davarnejad, R.
  • Chemical Engineering & Technology, Vol. 34, Issue 3
  • DOI: 10.1002/ceat.201000373

Atomic-Scale Modeling of Particle Size Effects for the Oxygen Reduction Reaction on Pt
journal, June 2011


The Impact of Geometric and Surface Electronic Properties of Pt-Catalysts on the Particle Size Effect in Electrocatalysis
journal, August 2005

  • Mayrhofer, K. J. J.; Blizanac, B. B.; Arenz, M.
  • The Journal of Physical Chemistry B, Vol. 109, Issue 30
  • DOI: 10.1021/jp051735z

Electrocatalysis on Platinum Nanoparticles: Particle Size Effect on Oxygen Reduction Reaction Activity
journal, September 2011

  • Shao, Minhua; Peles, Amra; Shoemaker, Krista
  • Nano Letters, Vol. 11, Issue 9
  • DOI: 10.1021/nl2017459

Oxidation of 2-propanol to acetone by dioxygen on a platinized electrode under open-circuit conditions
journal, January 1989

  • DiCosimo, Robert; Whitesides, George M.
  • The Journal of Physical Chemistry, Vol. 93, Issue 2
  • DOI: 10.1021/j100339a051

Selective oxidation of methanol to form dimethoxymethane and methyl formate over a monolayer V2O5/TiO2 catalyst
journal, March 2014


Kinetics and reaction pathways of methanol oxidation on platinum
journal, March 1986

  • McCabe, R. W.; McCready, D. F.
  • The Journal of Physical Chemistry, Vol. 90, Issue 7
  • DOI: 10.1021/j100398a043

The water solubility of 2-butanol: A widespread error
journal, November 1991


    Works referencing / citing this record:

    Sum-Frequency Generation Spectroscopy of Plasmonic Nanomaterials: A Review
    journal, March 2019

    • Humbert, Christophe; Noblet, Thomas; Dalstein, Laetitia
    • Materials, Vol. 12, Issue 5
    • DOI: 10.3390/ma12050836