skip to main content

DOE PAGESDOE PAGES

Title: Selective gas capture via kinetic trapping

Conventional approaches to the capture of CO 2 by metal-organic frameworks focus on equilibrium conditions, and frameworks that contain little CO 2 in equilibrium are often rejected as carbon-capture materials. Here we use a statistical mechanical model, parameterized by quantum mechanical data, to suggest that metal-organic frameworks can be used to separate CO 2 from a typical flue gas mixture when used under nonequilibrium conditions. The origin of this selectivity is an emergent gas-separation mechanism that results from the acquisition by different gas types of different mobilities within a crowded framework. The resulting distribution of gas types within the framework is in general spatially and dynamically heterogeneous. Our results suggest that relaxing the requirement of equilibrium can substantially increase the parameter space of conditions and materials for which selective gas capture can be effected.
Authors:
 [1] ;  [1] ;  [1] ;  [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Grant/Contract Number:
AC02-05CH11231
Type:
Accepted Manuscript
Journal Name:
Physical Chemistry Chemical Physics. PCCP (Print)
Additional Journal Information:
Journal Name: Physical Chemistry Chemical Physics. PCCP (Print); Journal Volume: 18; Journal Issue: 31; Journal ID: ISSN 1463-9076
Publisher:
Royal Society of Chemistry
Research Org:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
OSTI Identifier:
1393006

Kundu, Joyjit, Pascal, Tod, Prendergast, David, and Whitelam, Stephen. Selective gas capture via kinetic trapping. United States: N. p., Web. doi:10.1039/c6cp03940e.
Kundu, Joyjit, Pascal, Tod, Prendergast, David, & Whitelam, Stephen. Selective gas capture via kinetic trapping. United States. doi:10.1039/c6cp03940e.
Kundu, Joyjit, Pascal, Tod, Prendergast, David, and Whitelam, Stephen. 2016. "Selective gas capture via kinetic trapping". United States. doi:10.1039/c6cp03940e. https://www.osti.gov/servlets/purl/1393006.
@article{osti_1393006,
title = {Selective gas capture via kinetic trapping},
author = {Kundu, Joyjit and Pascal, Tod and Prendergast, David and Whitelam, Stephen},
abstractNote = {Conventional approaches to the capture of CO2 by metal-organic frameworks focus on equilibrium conditions, and frameworks that contain little CO2 in equilibrium are often rejected as carbon-capture materials. Here we use a statistical mechanical model, parameterized by quantum mechanical data, to suggest that metal-organic frameworks can be used to separate CO2 from a typical flue gas mixture when used under nonequilibrium conditions. The origin of this selectivity is an emergent gas-separation mechanism that results from the acquisition by different gas types of different mobilities within a crowded framework. The resulting distribution of gas types within the framework is in general spatially and dynamically heterogeneous. Our results suggest that relaxing the requirement of equilibrium can substantially increase the parameter space of conditions and materials for which selective gas capture can be effected.},
doi = {10.1039/c6cp03940e},
journal = {Physical Chemistry Chemical Physics. PCCP (Print)},
number = 31,
volume = 18,
place = {United States},
year = {2016},
month = {7}
}

Works referenced in this record:

Carbon Dioxide Capture in Metal–Organic Frameworks
journal, September 2011
  • Sumida, Kenji; Rogow, David L.; Mason, Jarad A.
  • Chemical Reviews, Vol. 112, Issue 2, p. 724-781
  • DOI: 10.1021/cr2003272

Small-Molecule Adsorption in Open-Site Metal–Organic Frameworks: A Systematic Density Functional Theory Study for Rational Design
journal, January 2015
  • Lee, Kyuho; Howe, Joshua D.; Lin, Li-Chiang
  • Chemistry of Materials, Vol. 27, Issue 3, p. 668-678
  • DOI: 10.1021/cm502760q

Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption
journal, January 2011
  • Mason, Jarad A.; Sumida, Kenji; Herm, Zoey R.
  • Energy & Environmental Science, Vol. 4, Issue 8, p. 3030-3040
  • DOI: 10.1039/c1ee01720a

Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites
journal, November 2009
  • Britt, D.; Furukawa, H.; Wang, B.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 49, p. 20637-20640
  • DOI: 10.1073/pnas.0909718106

Metal−Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature
journal, December 2005
  • Millward, Andrew R.; Yaghi, Omar M.
  • Journal of the American Chemical Society, Vol. 127, Issue 51, p. 17998-17999
  • DOI: 10.1021/ja0570032

Selective gas adsorption and separation in metal–organic frameworks
journal, January 2009
  • Li, Jian-Rong; Kuppler, Ryan J.; Zhou, Hong-Cai
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1477-1504
  • DOI: 10.1039/b802426j

Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation
journal, February 2013
  • Nugent, Patrick; Belmabkhout, Youssef; Burd, Stephen D.
  • Nature, Vol. 495, Issue 7439, p. 80-84
  • DOI: 10.1038/nature11893

Site-Specific CO2 Adsorption and Zero Thermal Expansion in an Anisotropic Pore Network
journal, December 2011
  • Queen, Wendy L.; Brown, Craig M.; Britt, David K.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 50, p. 24915-24919
  • DOI: 10.1021/jp208529p

The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013
  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Design and synthesis of an exceptionally stable and highly porous metal-organic framework
journal, November 1999
  • Li, Hailian; Eddaoudi, Mohamed; M., O'Keeffe
  • Nature, Vol. 402, Issue 6759, p. 276-279
  • DOI: 10.1038/46248

Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores
journal, August 2008
  • Caskey, Stephen R.; Wong-Foy, Antek G.; Matzger, Adam J.
  • Journal of the American Chemical Society, Vol. 130, Issue 33, p. 10870-10871
  • DOI: 10.1021/ja8036096