skip to main content


This content will become publicly available on September 1, 2018

Title: γ spectroscopy of states in Cl 32 relevant for the S 31 ( p , γ ) Cl 32 reaction rate

Background: The 31S(p,gamma) 32Cl reaction becomes important for sulfur production in novae if the P-31(p, alpha)Si-28 reaction rate is somewhat greater than currently accepted. The rate of the S-31(p,gamma) Cl-32 reaction is uncertain, primarily due to the properties of resonances at E-c.m. = 156 and 549 keV. Purpose: We precisely determined the excitation energies of states in Cl-32 through high-resolution. spectroscopy including the two states most important for the S-31(p,gamma) Cl-32 reaction at nova temperatures. Method: Excited states in Cl-32 were populated using the B-10(Mg-24, 2n) Cl-32 reaction with a Mg-24 beam from the ATLAS facility at Argonne National Laboratory. The reaction channel of interest was selected using recoils in the Fragment Mass Analyzer, and we determined precise level energies by detecting. rays with Gammasphere. Results: We also observed. rays from the decay of six excited states in Cl-32. The excitation energies for two unbound levels at E-x = 1738.1 (6) keV and 2130.5 (10) keV were determined and found to be in agreement with a previous high-precision measurement of the S-32(He-3, t) Cl-32 reaction [1]. Conclusions: An updated 31S(p,gamma) Cl-32 reaction rate is presented. With the excitation energies of important levels firmly established, the dominant uncertainty in the reactionmore » rate at nova temperatures is due to the strength of the resonance corresponding to the 2131-keV state in Cl-32.« less
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [2] ;  [2] ;  [2] ;  [2] ;  [2] ;  [2]
  1. Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Physics and Astronomy
  2. Argonne National Lab. (ANL), Argonne, IL (United States). Physics Division
Publication Date:
Grant/Contract Number:
AC02-06CH11357; FG02-96ER40978
Accepted Manuscript
Journal Name:
Physical Review C
Additional Journal Information:
Journal Volume: 96; Journal Issue: 3; Journal ID: ISSN 2469-9985
American Physical Society (APS)
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26)
Country of Publication:
United States
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1378135