DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrochemical Modeling and Performance of a Lithium- and Manganese-Rich Layered Transition-Metal Oxide Positive Electrode

Abstract

The impedance of a lithium- and manganese-rich layered transition-metal oxide (MR-NMC) positive electrode, specifically Li1.2Ni0.15Mn0.55Co0.1O2, is compared to two other transition-metal layered oxide materials, specifically LiNi0.8Co0.15Al0.05O2 (NCA) and Li1.05(Ni1/3Co1/3Mn1/3)0.95O2 (NMC). A more detailed electrochemical impedance spectroscopy (EIS) study is conducted on the LMR-NMC electrode, which includes a range of states-of-charge (SOCs) for both current directions (i.e. charge and discharge) and two relaxation times (i.e. hours and one hundred hours) before the EIS sweep. The LMR-NMC electrode EIS studies are supported by half-cell constant current and galvanostatic intermittent titration technique (GITT) studies. Two types of electrochemical models are utilized to examine the results. The first type is a lithium ion cell electrochemical model for intercalation active material electrodes that includes a complex active material/electrolyte interfacial structure. In conclusion, the other is a lithium ion half-cell electrochemical model that focuses on the unique composite structure of the bulk LMR-NMC materials.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1392636
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Volume: 162; Journal Issue: 4; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE; battery; cathode; electrochemical; lithium; modeling; oxide

Citation Formats

Dees, Dennis W., Abraham, Daniel P., Lu, Wenquan, Gallagher, Kevin G., Bettge, Martin, and Jansen, Andrew N. Electrochemical Modeling and Performance of a Lithium- and Manganese-Rich Layered Transition-Metal Oxide Positive Electrode. United States: N. p., 2015. Web. doi:10.1149/2.0231504jes.
Dees, Dennis W., Abraham, Daniel P., Lu, Wenquan, Gallagher, Kevin G., Bettge, Martin, & Jansen, Andrew N. Electrochemical Modeling and Performance of a Lithium- and Manganese-Rich Layered Transition-Metal Oxide Positive Electrode. United States. https://doi.org/10.1149/2.0231504jes
Dees, Dennis W., Abraham, Daniel P., Lu, Wenquan, Gallagher, Kevin G., Bettge, Martin, and Jansen, Andrew N. Wed . "Electrochemical Modeling and Performance of a Lithium- and Manganese-Rich Layered Transition-Metal Oxide Positive Electrode". United States. https://doi.org/10.1149/2.0231504jes. https://www.osti.gov/servlets/purl/1392636.
@article{osti_1392636,
title = {Electrochemical Modeling and Performance of a Lithium- and Manganese-Rich Layered Transition-Metal Oxide Positive Electrode},
author = {Dees, Dennis W. and Abraham, Daniel P. and Lu, Wenquan and Gallagher, Kevin G. and Bettge, Martin and Jansen, Andrew N.},
abstractNote = {The impedance of a lithium- and manganese-rich layered transition-metal oxide (MR-NMC) positive electrode, specifically Li1.2Ni0.15Mn0.55Co0.1O2, is compared to two other transition-metal layered oxide materials, specifically LiNi0.8Co0.15Al0.05O2 (NCA) and Li1.05(Ni1/3Co1/3Mn1/3)0.95O2 (NMC). A more detailed electrochemical impedance spectroscopy (EIS) study is conducted on the LMR-NMC electrode, which includes a range of states-of-charge (SOCs) for both current directions (i.e. charge and discharge) and two relaxation times (i.e. hours and one hundred hours) before the EIS sweep. The LMR-NMC electrode EIS studies are supported by half-cell constant current and galvanostatic intermittent titration technique (GITT) studies. Two types of electrochemical models are utilized to examine the results. The first type is a lithium ion cell electrochemical model for intercalation active material electrodes that includes a complex active material/electrolyte interfacial structure. In conclusion, the other is a lithium ion half-cell electrochemical model that focuses on the unique composite structure of the bulk LMR-NMC materials.},
doi = {10.1149/2.0231504jes},
journal = {Journal of the Electrochemical Society},
number = 4,
volume = 162,
place = {United States},
year = {Wed Jan 21 00:00:00 EST 2015},
month = {Wed Jan 21 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 35 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Optimization of Acetylene Black Conductive Additive and PVDF Composition for High-Power Rechargeable Lithium-Ion Cells
journal, January 2007

  • Liu, G.; Zheng, H.; Simens, A. S.
  • Journal of The Electrochemical Society, Vol. 154, Issue 12
  • DOI: 10.1149/1.2792293

Studies of local degradation phenomena in composite cathodes for lithium-ion batteries
journal, May 2007


Conflicting Roles of Nickel in Controlling Cathode Performance in Lithium Ion Batteries
journal, September 2012

  • Gu, Meng; Belharouak, Ilias; Genc, Arda
  • Nano Letters, Vol. 12, Issue 10
  • DOI: 10.1021/nl302249v

Electrochemical Modeling of Lithium-Ion Positive Electrodes during Hybrid Pulse Power Characterization Tests
journal, January 2008

  • Dees, Dennis; Gunen, Evren; Abraham, Daniel
  • Journal of The Electrochemical Society, Vol. 155, Issue 8
  • DOI: 10.1149/1.2939211

A Volume Averaged Approach to the Numerical Modeling of Phase-Transition Intercalation Electrodes Presented for Li x C 6
journal, January 2012

  • Gallagher, Kevin G.; Dees, Dennis W.; Jansen, Andrew N.
  • Journal of The Electrochemical Society, Vol. 159, Issue 12
  • DOI: 10.1149/2.015301jes

Modeling a Porous Intercalation Electrode with Two Characteristic Particle Sizes
journal, January 1997

  • Darling, Robert
  • Journal of The Electrochemical Society, Vol. 144, Issue 12
  • DOI: 10.1149/1.1838166

Theoretical examination of reference electrodes for lithium-ion cells
journal, December 2007


Correlating hysteresis and voltage fade in lithium- and manganese-rich layered transition-metal oxide electrodes
journal, August 2013

  • Gallagher, Kevin G.; Croy, Jason R.; Balasubramanian, Mahalingam
  • Electrochemistry Communications, Vol. 33
  • DOI: 10.1016/j.elecom.2013.04.022

Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells
journal, January 1996

  • Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 143, Issue 6
  • DOI: 10.1149/1.1836921

Change of Conductivity with Salt Content, Solvent Composition, and Temperature for Electrolytes of LiPF[sub 6] in Ethylene Carbonate-Ethyl Methyl Carbonate
journal, January 2001

  • Ding, M. S.; Xu, K.; Zhang, S. S.
  • Journal of The Electrochemical Society, Vol. 148, Issue 10
  • DOI: 10.1149/1.1403730

Alternating Current Impedance Electrochemical Modeling of Lithium-Ion Positive Electrodes
journal, January 2005

  • Dees, Dennis; Gunen, Evren; Abraham, Daniel
  • Journal of The Electrochemical Society, Vol. 152, Issue 7
  • DOI: 10.1149/1.1928169

Modeling the impedance versus voltage characteristics of LiNi0.8Co0.15Al0.05O2
journal, January 2008


Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries
journal, March 2014

  • Lin, Feng; Markus, Isaac M.; Nordlund, Dennis
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4529

Simulation and Optimization of the Dual Lithium Ion Insertion Cell
journal, January 1994

  • Fuller, Thomas F.
  • Journal of The Electrochemical Society, Vol. 141, Issue 1
  • DOI: 10.1149/1.2054684

Effect of interface modifications on voltage fade in 0.5Li2MnO3·0.5LiNi0.375Mn0.375Co0.25O2 cathode materials
journal, March 2014


Selection of Conductive Additives in Li-Ion Battery Cathodes
journal, January 2007

  • Chen, Y. -H.; Wang, C. -W.; Liu, G.
  • Journal of The Electrochemical Society, Vol. 154, Issue 10
  • DOI: 10.1149/1.2767839

Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
journal, January 1993

  • Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 140, Issue 6
  • DOI: 10.1149/1.2221597

Cathode Performance as a Function of Inactive Material and Void Fractions
journal, January 2010

  • Zheng, Honghe; Liu, Gao; Song, Xiangyun
  • Journal of The Electrochemical Society, Vol. 157, Issue 10
  • DOI: 10.1149/1.3459878

Quantifying Hysteresis and Voltage Fade in xLi 2 MnO 3 (1-x)LiMn 0.5 Ni 0.5 O 2 Electrodes as a Function of Li 2 MnO 3 Content
journal, December 2013

  • Croy, Jason R.; Gallagher, Kevin G.; Balasubramanian, Mahalingam
  • Journal of The Electrochemical Society, Vol. 161, Issue 3
  • DOI: 10.1149/2.049403jes

Electrochemical Characterization of Lithium and Manganese Rich Composite Material for Lithium Ion Batteries
journal, January 2013

  • Lu, Wenquan; Wu, Qingliu; Dees, Dennis W.
  • Journal of The Electrochemical Society, Vol. 160, Issue 6
  • DOI: 10.1149/2.134306jes

Electrochemical Modeling the Impedance of a Lithium-Ion Positive Electrode Single Particle
journal, January 2013

  • Dees, Dennis W.; Gallagher, Kevin G.; Abraham, Daniel P.
  • Journal of The Electrochemical Society, Vol. 160, Issue 3
  • DOI: 10.1149/2.055303jes

The Impedance Response of a Porous Electrode Composed of Intercalation Particles
journal, January 2000

  • Meyers, Jeremy P.; Doyle, Marc; Darling, Robert M.
  • Journal of The Electrochemical Society, Vol. 147, Issue 8
  • DOI: 10.1149/1.1393627

Micro-Four-Line Probe to Measure Electronic Conductivity and Contact Resistance of Thin-Film Battery Electrodes
journal, January 2015

  • Lanterman, Bryson J.; Riet, Adriaan A.; Gates, Nathaniel S.
  • Journal of The Electrochemical Society, Vol. 162, Issue 10
  • DOI: 10.1149/2.0581510jes

Examining Hysteresis in Composite x Li 2 MnO 3 ·(1– x )LiMO 2 Cathode Structures
journal, March 2013

  • Croy, Jason R.; Gallagher, Kevin G.; Balasubramanian, Mahalingam
  • The Journal of Physical Chemistry C, Vol. 117, Issue 13
  • DOI: 10.1021/jp312658q

Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries
journal, March 2005

  • Thackeray, Michael M.; Johnson, Christopher S.; Vaughey, John T.
  • Journal of Materials Chemistry, Vol. 15, Issue 23, p. 2257-2267
  • DOI: 10.1039/b417616m

First-Cycle Evolution of Local Structure in Electrochemically Activated Li 2 MnO 3
journal, December 2014

  • Croy, Jason R.; Park, Joong Sun; Dogan, Fulya
  • Chemistry of Materials, Vol. 26, Issue 24
  • DOI: 10.1021/cm5039792

Factors that affect Li mobility in layered lithium transition metal oxides
journal, September 2006


Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries
journal, January 2007

  • Thackeray, Michael M.; Kang, Sun-Ho; Johnson, Christopher S.
  • Journal of Materials Chemistry, Vol. 17, Issue 30, p. 3112-3125
  • DOI: 10.1039/b702425h

Application of a lithium–tin reference electrode to determine electrode contributions to impedance rise in high-power lithium-ion cells
journal, October 2004


Comments on stabilizing layered manganese oxide electrodes for Li batteries
journal, November 2013


First-principles investigation of phase stability in Li x CoO 2
journal, August 1998


Porous cathode optimization for lithium cells: Ionic and electronic conductivity, capacity, and selection of materials
journal, May 2010


Li2MnO3-based composite cathodes for lithium batteries: A novel synthesis approach and new structures
journal, October 2011

  • Croy, J. R.; Kang, S.-H.; Balasubramanian, M.
  • Electrochemistry Communications, Vol. 13, Issue 10, p. 1063-1066
  • DOI: 10.1016/j.elecom.2011.06.037

A micromechanical model for effective conductivity in granular electrode structures
journal, October 2013


A review of conduction phenomena in Li-ion batteries
journal, December 2010


Analysis of the Galvanostatic Intermittent Titration Technique (GITT) as applied to a lithium-ion porous electrode
journal, April 2009


Analytical Solution for the Impedance of a Porous Electrode
journal, January 2004

  • Devan, Sheba; Subramanian, Venkat R.; White, R. E.
  • Journal of The Electrochemical Society, Vol. 151, Issue 6
  • DOI: 10.1149/1.1739218

Design and Optimization of a Natural Graphite/Iron Phosphate Lithium-Ion Cell
journal, January 2004

  • Srinivasan, Venkat; Newman, John
  • Journal of The Electrochemical Society, Vol. 151, Issue 10
  • DOI: 10.1149/1.1785013

Works referencing / citing this record:

Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes
journal, December 2017


Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries
journal, April 2018


Design and Demonstration of Three-Electrode Pouch Cells for Lithium-Ion Batteries
journal, January 2017

  • An, Seong Jin; Li, Jianlin; Daniel, Claus
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.0031709jes

Cycling Behavior of NCM523/Graphite Lithium-Ion Cells in the 3–4.4 V Range: Diagnostic Studies of Full Cells and Harvested Electrodes
journal, September 2016

  • Gilbert, James A.; Bareño, Javier; Spila, Timothy
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0081701jes

Direct Determination of Diffusion Coefficients in Commercial Li-Ion Batteries
journal, January 2018

  • Cabañero, Maria Angeles; Boaretto, Nicola; Röder, Manuel
  • Journal of The Electrochemical Society, Vol. 165, Issue 5
  • DOI: 10.1149/2.0301805jes

Electrochemical Cycle-Life Characterization of High Energy Lithium-Ion Cells with Thick Li(Ni 0.6 Mn 0.2 Co 0.2 )O 2 and Graphite Electrodes
journal, January 2017

  • Leng, Yongjun; Ge, Shanhai; Marple, Dan
  • Journal of The Electrochemical Society, Vol. 164, Issue 6
  • DOI: 10.1149/2.0451706jes

Porous Electrode Model with Particle Stress Effects for Li(Ni 1/3 Co 1/3 Mn 1/3 )O 2 Electrode
journal, January 2019

  • Ko, Jing Ying; Varini, Maria; Klett, Matilda
  • Journal of The Electrochemical Society, Vol. 166, Issue 13
  • DOI: 10.1149/2.0661913jes