DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Exploring Lithium-Cobalt-Nickel Oxide Spinel Electrodes for ≥3.5 V Li-Ion Cells

Abstract

Some recent reports have indicated that a manganese oxide spinel component, when embedded in a relatively small concentration in layered xLi2MnO3center dot(1-x)LiMO2 (M = Ni, Mn, or Co) electrode systems, can act as a stabilizer that increases their capacity, rate capability, cycle life, and first-cycle efficiency. Our findings prompted us to explore the possibility of exploiting lithiated cobalt oxide spinel stabilizers by taking advantage of (1) the low mobility of cobalt ions relative to that of manganese and nickel ions in close-packed oxides and (2) their higher potential (similar to 3.6 V vs Li0) relative to manganese oxide spinels (similar to 2.9 V vs Li0) for the spinel-to-lithiated spinel electrochemical reaction. In particular, we revisited the structural and electrochemical properties of lithiated spinels in the LiCo1-xNixO2 (0 <= x <= 0.2) system, first reported almost 25 years ago, by means of high-resolution (synchrotron) X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance spectroscopy, electrochemical cell tests, and theoretical calculations. These results provide a deeper understanding of the complexity of intergrown layered/lithiated spinel LiCo1-xNixO2 structures when prepared in air between 400 and 800 degrees C and the impact of structural variations on their electrochemical behavior. These structures, when used in low concentrations,more » offer the possibility of improving the cycling stability, energy, and power of high energy (>= 3.5 V) lithium-ion cells.« less

Authors:
 [1];  [1];  [2];  [2];  [2];  [3];  [3];  [4];  [4];  [1];  [1];  [1];  [1];  [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Division
  2. Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering, NUANCE Center
  3. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab.
  4. Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States); Energy Frontier Research Centers (EFRC) (United States). Center for Electrical Energy Storage (CEES)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1392304
Grant/Contract Number:  
AC02-06CH11357; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 8; Journal Issue: 41; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE; lithium-cobalt-nickel oxide; lithium-ion battery; spinel; stabilizer; structure

Citation Formats

Lee, Eungje, Blauwkamp, Joel, Castro, Fernando C., Wu, Jinsong, Dravid, Vinayak P., Yan, Pengfei, Wang, Chongmin, Kim, Soo, Wolverton, Christopher, Benedek, Roy, Dogan, Fulya, Park, Joong Sun, Croy, Jason R., and Thackeray, Michael M. Exploring Lithium-Cobalt-Nickel Oxide Spinel Electrodes for ≥3.5 V Li-Ion Cells. United States: N. p., 2016. Web. doi:10.1021/acsami.6b09073.
Lee, Eungje, Blauwkamp, Joel, Castro, Fernando C., Wu, Jinsong, Dravid, Vinayak P., Yan, Pengfei, Wang, Chongmin, Kim, Soo, Wolverton, Christopher, Benedek, Roy, Dogan, Fulya, Park, Joong Sun, Croy, Jason R., & Thackeray, Michael M. Exploring Lithium-Cobalt-Nickel Oxide Spinel Electrodes for ≥3.5 V Li-Ion Cells. United States. https://doi.org/10.1021/acsami.6b09073
Lee, Eungje, Blauwkamp, Joel, Castro, Fernando C., Wu, Jinsong, Dravid, Vinayak P., Yan, Pengfei, Wang, Chongmin, Kim, Soo, Wolverton, Christopher, Benedek, Roy, Dogan, Fulya, Park, Joong Sun, Croy, Jason R., and Thackeray, Michael M. Tue . "Exploring Lithium-Cobalt-Nickel Oxide Spinel Electrodes for ≥3.5 V Li-Ion Cells". United States. https://doi.org/10.1021/acsami.6b09073. https://www.osti.gov/servlets/purl/1392304.
@article{osti_1392304,
title = {Exploring Lithium-Cobalt-Nickel Oxide Spinel Electrodes for ≥3.5 V Li-Ion Cells},
author = {Lee, Eungje and Blauwkamp, Joel and Castro, Fernando C. and Wu, Jinsong and Dravid, Vinayak P. and Yan, Pengfei and Wang, Chongmin and Kim, Soo and Wolverton, Christopher and Benedek, Roy and Dogan, Fulya and Park, Joong Sun and Croy, Jason R. and Thackeray, Michael M.},
abstractNote = {Some recent reports have indicated that a manganese oxide spinel component, when embedded in a relatively small concentration in layered xLi2MnO3center dot(1-x)LiMO2 (M = Ni, Mn, or Co) electrode systems, can act as a stabilizer that increases their capacity, rate capability, cycle life, and first-cycle efficiency. Our findings prompted us to explore the possibility of exploiting lithiated cobalt oxide spinel stabilizers by taking advantage of (1) the low mobility of cobalt ions relative to that of manganese and nickel ions in close-packed oxides and (2) their higher potential (similar to 3.6 V vs Li0) relative to manganese oxide spinels (similar to 2.9 V vs Li0) for the spinel-to-lithiated spinel electrochemical reaction. In particular, we revisited the structural and electrochemical properties of lithiated spinels in the LiCo1-xNixO2 (0 <= x <= 0.2) system, first reported almost 25 years ago, by means of high-resolution (synchrotron) X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance spectroscopy, electrochemical cell tests, and theoretical calculations. These results provide a deeper understanding of the complexity of intergrown layered/lithiated spinel LiCo1-xNixO2 structures when prepared in air between 400 and 800 degrees C and the impact of structural variations on their electrochemical behavior. These structures, when used in low concentrations, offer the possibility of improving the cycling stability, energy, and power of high energy (>= 3.5 V) lithium-ion cells.},
doi = {10.1021/acsami.6b09073},
journal = {ACS Applied Materials and Interfaces},
number = 41,
volume = 8,
place = {United States},
year = {Tue Oct 04 00:00:00 EDT 2016},
month = {Tue Oct 04 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 23 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries
journal, January 2007

  • Thackeray, Michael M.; Kang, Sun-Ho; Johnson, Christopher S.
  • Journal of Materials Chemistry, Vol. 17, Issue 30, p. 3112-3125
  • DOI: 10.1039/b702425h

High-Energy Cathode Materials (Li 2 MnO 3 –LiMO 2 ) for Lithium-Ion Batteries
journal, March 2013

  • Yu, Haijun; Zhou, Haoshen
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 8
  • DOI: 10.1021/jz400032v

Review of the U.S. Department of Energy’s “Deep Dive” Effort to Understand Voltage Fade in Li- and Mn-Rich Cathodes
journal, October 2015

  • Croy, Jason R.; Balasubramanian, Mahalingam; Gallagher, Kevin G.
  • Accounts of Chemical Research, Vol. 48, Issue 11
  • DOI: 10.1021/acs.accounts.5b00277

Enhancing the Kinetics of Li-Rich Cathode Materials through the Pinning Effects of Gradient Surface Na + Doping
journal, December 2015

  • Qing, Ren-Peng; Shi, Ji-Lei; Xiao, Dong-Dong
  • Advanced Energy Materials, Vol. 6, Issue 6
  • DOI: 10.1002/aenm.201501914

Mitigating Voltage Decay of Li-Rich Cathode Material via Increasing Ni Content for Lithium-Ion Batteries
journal, July 2016

  • Shi, Ji-Lei; Zhang, Jie-Nan; He, Min
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 31
  • DOI: 10.1021/acsami.6b06733

Lithium–manganese oxide electrodes with layered–spinel composite structures xLi2MnO3·(1−x)Li1+yMn2−yO4 (0<x<1, 0⩽y⩽0.33) for lithium batteries
journal, May 2005


Lithium–manganese–nickel-oxide electrodes with integrated layered–spinel structures for lithium batteries
journal, February 2007


Identification of LiNi0.5Mn1.5O4 spinel in layered manganese enriched electrode materials
journal, March 2011

  • Belharouak, Ilias; Koenig, Gary M.; Ma, Jiwei
  • Electrochemistry Communications, Vol. 13, Issue 3, p. 232-236
  • DOI: 10.1016/j.elecom.2010.12.021

High-Voltage, High-Energy Layered-Spinel Composite Cathodes with Superior Cycle Life for Lithium-Ion Batteries
journal, December 2011

  • Lee, Eun-Sung; Huq, Ashfia; Chang, Hong-Young
  • Chemistry of Materials, Vol. 24, Issue 3
  • DOI: 10.1021/cm2034992

Composite ‘Layered-Layered-Spinel’ Cathode Structures for Lithium-Ion Batteries
journal, November 2012

  • Kim, Donghan; Sandi, Giselle; Croy, Jason R.
  • Journal of The Electrochemical Society, Vol. 160, Issue 1, p. A31-A38
  • DOI: 10.1149/2.049301jes

Influence of Li content on the structure and electrochemical performance of Li1+xNi0.25Mn0.75O2.25+x/2 cathode for Li-ion battery
journal, February 2014


Advances in Stabilizing ‘Layered-Layered’ xLi2MnO3·(1-x)LiMO2(M=Mn, Ni, Co) Electrodes with a Spinel Component
journal, January 2014

  • Long, Brandon R.; Croy, Jason R.; Park, Joong Sun
  • Journal of The Electrochemical Society, Vol. 161, Issue 14, p. A2160-A2167
  • DOI: 10.1149/2.0681414jes

Structure and electrochemistry of lithium cobalt oxide synthesised at 400°C
journal, March 1992

  • Gummow, R. J.; Thackeray, M. M.; David, W. I. F.
  • Materials Research Bulletin, Vol. 27, Issue 3, p. 327-337
  • DOI: 10.1016/0025-5408(92)90062-5

Lithium-cobalt-nickel-oxide cathode materials prepared at 400°C for rechargeable lithium batteries
journal, July 1992


Role of Electronic Structure in the Susceptibility of Metastable Transition-Metal Oxide Structures to Transformation
journal, October 2004

  • Reed, John; Ceder, Gerbrand
  • Chemical Reviews, Vol. 104, Issue 10
  • DOI: 10.1021/cr020733x

Lithium extraction from orthorhombic lithium manganese oxide and the phase transformation to spinel
journal, December 1993


Structural transformation on cycling layered Li(Mn1−yCoy)O2 cathode materials
journal, September 1999


Lithium insertion into manganese spinels
journal, April 1983

  • Thackeray, M. M.; David, W. I. F.; Bruce, P. G.
  • Materials Research Bulletin, Vol. 18, Issue 4, p. 461-472
  • DOI: 10.1016/0025-5408(83)90138-1

Li Metal-Free Rechargeable Batteries Based on Li[sub 1+x]Mn[sub 2]O[sub 4] Cathodes (0 ≤ x ≤ 1) and Carbon Anodes
journal, January 1991

  • Tarascon, J. M.
  • Journal of The Electrochemical Society, Vol. 138, Issue 10
  • DOI: 10.1149/1.2085331

Differentiating allotropic LiCoO2/Li2Co2O4: A structural and electrochemical study
journal, December 2014


Whole powder pattern decomposition methods and applications: A retrospection
journal, December 2005


Synthesis and Structure Refinement of LiCoO2Single Crystals
journal, November 1998

  • Akimoto, Junji; Gotoh, Yoshito; Oosawa, Yoshinao
  • Journal of Solid State Chemistry, Vol. 141, Issue 1
  • DOI: 10.1006/jssc.1998.7966

Synthesis and electrochemistry of spinel LTLiCoO2
journal, July 1993


Spinel versus layered structures for lithium cobalt oxide synthesised at 400°C
journal, March 1993


A reinvestigation of the structures of lithium-cobalt-oxides with neutron-diffraction data
journal, November 1993

  • Gummow, R. J.; Liles, D. C.; Thackeray, M. M.
  • Materials Research Bulletin, Vol. 28, Issue 11, p. 1177-1184
  • DOI: 10.1016/0025-5408(93)90098-X

Cation and vacancy ordering in Li x CoO 2
journal, January 1998


Prediction of Li Intercalation and Battery Voltages in Layered vs. Cubic Li[sub x]CoO[sub 2]
journal, January 1998

  • Wolverton, C.
  • Journal of The Electrochemical Society, Vol. 145, Issue 7
  • DOI: 10.1149/1.1838653

The structure of low temperature crystallized LiCoO2
journal, August 1995


Structural Features of Low-Temperature LiCoO2and Acid-Delithiated Products
journal, October 1998

  • Shao-Horn, Y.; Hackney, S. A.; Johnson, C. S.
  • Journal of Solid State Chemistry, Vol. 140, Issue 1
  • DOI: 10.1006/jssc.1998.7873

Characterization of  LT  ‐ LixCo1 − yNiy O 2 Electrodes for Rechargeable Lithium Cells
journal, January 1993

  • Gummow, R. J.; Thackeray, M. M.
  • Journal of The Electrochemical Society, Vol. 140, Issue 12, p. 3365-3368
  • DOI: 10.1149/1.2221096

The mechanism and kinetics of thermal decomposition of Co3−xNixO4
journal, September 1999


NMR Studies of Cathode Materials for Lithium-Ion Rechargeable Batteries
journal, October 2004

  • Grey, Clare P.; Dupré, Nicolas
  • Chemical Reviews, Vol. 104, Issue 10
  • DOI: 10.1021/cr020734p

Combined Effects of Ni and Li Doping on the Phase Transitions in Li[sub x]CoO[sub 2]
journal, January 2002

  • Levasseur, S.; Ménétrier, M.; Delmas, C.
  • Journal of The Electrochemical Society, Vol. 149, Issue 12
  • DOI: 10.1149/1.1516219

6Li and 7Li NMR in the LiNi1-yCoyO2 Solid Solution (0 .ltoreq. y .ltoreq. 1)
journal, March 1995

  • Marichal, Claire; Hirschinger, Jerome; Granger, Pierre
  • Inorganic Chemistry, Vol. 34, Issue 7
  • DOI: 10.1021/ic00111a026

Lithium insertion material of LiNi1/2Mn1/2O2 for advanced lithium-ion batteries
journal, June 2003


Effect of cobalt substitution on cationic distribution in LiNi1 − y CoyO2 electrode materials
journal, September 1996


Works referencing / citing this record:

Li 2 Ni 0.2 Co 1.8 O 4 having a spinel framework as a zero-strain positive electrode material for lithium-ion batteries
journal, January 2019

  • Ariyoshi, Kingo; Orikasa, Yuki; Kajikawa, Kensuke
  • Journal of Materials Chemistry A, Vol. 7, Issue 22
  • DOI: 10.1039/c9ta03191j

The Effects of Trace Yb Doping on the Electrochemical Performance of Li‐Rich Layered Oxides
journal, April 2019


First-Cycle Simulation for Li-Rich Layered Oxide Cathode Material x Li 2 MnO 3 (1- x )Li M O 2 ( x = 0.4)
journal, January 2018