skip to main content


Title: Microfabrication of plastic-PDMS microfluidic devices using polyimide release layer and selective adhesive bonding

In this study, we present an improved method to bond poly(dimethylsiloxane) (PDMS) with polyimide (PI) to develop flexible substrate microfluidic devices. The PI film was separately fabricated on a silicon wafer by spin coating followed by thermal treatment to avoid surface unevenness of the flexible substrate. In this way, we could also integrate flexible substrate into standard micro-electromechanical systems (MEMS) fabrication. Meanwhile, the adhesive epoxy was selectively transferred to the PDMS microfluidic device by a stamp-and-stick method to avoid epoxy clogging the microfluidic channels. To spread out the epoxy evenly on the transferring substrate, we used superhydrophilic vanadium oxide film coated glass as the transferring substrate. After the bonding process, the flexible substrate could easily be peeled off from the rigid substrate. Contact angle measurement was used to characterize the hydrophicity of the vanadium oxide film. X-ray photoelectron spectroscopy analysis was conducted to study the surface of the epoxy. We further evaluated the bonding quality by peeling tests, which showed a maximum bonding strength of 100 kPa. By injecting with black ink, the plastic microfluidic device was confirmed to be well bonded with no leakage for a day under 1 atm. Finally, this proposed versatile method could bond the microfluidicmore » device and plastic substrate together and be applied in the fabrication of some biosensors and lab-on-a-chip systems.« less
 [1] ;  [2] ;  [3] ;  [2]
  1. Stony Brook Univ., NY (United States)
  2. Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)
  3. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 0960-1317; KC0403020
Grant/Contract Number:
SC0012704; IDBR-1530508
Accepted Manuscript
Journal Name:
Journal of Micromechanics and Microengineering. Structures, Devices and Systems
Additional Journal Information:
Journal Volume: 27; Journal Issue: 5; Journal ID: ISSN 0960-1317
IOP Publishing
Research Org:
Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org:
USDOE Office of Science (SC); National Science Foundation (NSF); AbbVie Inc. (United States)
Country of Publication:
United States
42 ENGINEERING; microfluidic device; flexible substrate; polyimide (PI); polydimethylsiloxane (PDMS); adhesive bonding; superhydrophilic; stamp-and-stick; Center for Functional Nanomaterials
OSTI Identifier: