DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A portable bioelectronic sensing system (BESSY) for environmental deployment incorporating differential microbial sensing in miniaturized reactors

Abstract

Current technologies are lacking in the area of deployable, in situ monitoring of complex chemicals in environmental applications. Microorganisms metabolize various chemical compounds and can be engineered to be analyte-specific making them naturally suited for robust chemical sensing. But, current electrochemical microbial biosensors use large and expensive electrochemistry equipment not suitable for on-site, real-time environmental analysis. We demonstrate a miniaturized, autonomous bioelectronic sensing system (BESSY) suitable for deployment for instantaneous and continuous sensing applications. We developed a 2x2 cm footprint, low power, two-channel, three-electrode electrochemical potentiostat which wirelessly transmits data for on-site microbial sensing. Furthermore, we designed a new way of fabricating self-contained, submersible, miniaturized reactors (m-reactors) to encapsulate the bacteria, working, and counter electrodes. We have validated the BESSY’s ability to specifically detect a chemical amongst environmental perturbations using differential current measurements. This work paves the way for in situ microbial sensing outside of a controlled laboratory environment.

Authors:
ORCiD logo; ; ; ;
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1392131
Alternate Identifier(s):
OSTI ID: 1416915
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Published Article
Journal Name:
PLoS ONE
Additional Journal Information:
Journal Name: PLoS ONE Journal Volume: 12 Journal Issue: 9; Journal ID: ISSN 1932-6203
Publisher:
Public Library of Science (PLoS)
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Zhou, Alyssa Y., Baruch, Moshe, Ajo-Franklin, Caroline M., Maharbiz, Michel M., and Senko, ed., John M. A portable bioelectronic sensing system (BESSY) for environmental deployment incorporating differential microbial sensing in miniaturized reactors. United States: N. p., 2017. Web. doi:10.1371/journal.pone.0184994.
Zhou, Alyssa Y., Baruch, Moshe, Ajo-Franklin, Caroline M., Maharbiz, Michel M., & Senko, ed., John M. A portable bioelectronic sensing system (BESSY) for environmental deployment incorporating differential microbial sensing in miniaturized reactors. United States. https://doi.org/10.1371/journal.pone.0184994
Zhou, Alyssa Y., Baruch, Moshe, Ajo-Franklin, Caroline M., Maharbiz, Michel M., and Senko, ed., John M. Fri . "A portable bioelectronic sensing system (BESSY) for environmental deployment incorporating differential microbial sensing in miniaturized reactors". United States. https://doi.org/10.1371/journal.pone.0184994.
@article{osti_1392131,
title = {A portable bioelectronic sensing system (BESSY) for environmental deployment incorporating differential microbial sensing in miniaturized reactors},
author = {Zhou, Alyssa Y. and Baruch, Moshe and Ajo-Franklin, Caroline M. and Maharbiz, Michel M. and Senko, ed., John M.},
abstractNote = {Current technologies are lacking in the area of deployable, in situ monitoring of complex chemicals in environmental applications. Microorganisms metabolize various chemical compounds and can be engineered to be analyte-specific making them naturally suited for robust chemical sensing. But, current electrochemical microbial biosensors use large and expensive electrochemistry equipment not suitable for on-site, real-time environmental analysis. We demonstrate a miniaturized, autonomous bioelectronic sensing system (BESSY) suitable for deployment for instantaneous and continuous sensing applications. We developed a 2x2 cm footprint, low power, two-channel, three-electrode electrochemical potentiostat which wirelessly transmits data for on-site microbial sensing. Furthermore, we designed a new way of fabricating self-contained, submersible, miniaturized reactors (m-reactors) to encapsulate the bacteria, working, and counter electrodes. We have validated the BESSY’s ability to specifically detect a chemical amongst environmental perturbations using differential current measurements. This work paves the way for in situ microbial sensing outside of a controlled laboratory environment.},
doi = {10.1371/journal.pone.0184994},
journal = {PLoS ONE},
number = 9,
volume = 12,
place = {United States},
year = {Fri Sep 15 00:00:00 EDT 2017},
month = {Fri Sep 15 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1371/journal.pone.0184994

Citation Metrics:
Cited by: 20 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Tuning Promoter Strengths for Improved Synthesis and Function of Electron Conduits in Escherichia coli
journal, August 2012

  • Goldbeck, Cheryl P.; Jensen, Heather M.; TerAvest, Michaela A.
  • ACS Synthetic Biology, Vol. 2, Issue 3
  • DOI: 10.1021/sb300119v

Exoelectrogenic bacteria that power microbial fuel cells
journal, March 2009

  • Logan, Bruce E.
  • Nature Reviews Microbiology, Vol. 7, Issue 5, p. 375-381
  • DOI: 10.1038/nrmicro2113

A comprehensive review of microbial electrochemical systems as a platform technology
journal, December 2013


An arsenic-specific biosensor with genetically engineered Shewanella oneidensis in a bioelectrochemical system
journal, December 2014

  • Webster, Dylan P.; TerAvest, Michaela A.; Doud, Devin F. R.
  • Biosensors and Bioelectronics, Vol. 62
  • DOI: 10.1016/j.bios.2014.07.003

Microbial biosensors
journal, May 2006


A single-chamber microbial fuel cell as a biosensor for wastewaters
journal, July 2009


Environmental sensor networks in ecological research
journal, April 2009


Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1
journal, December 2012

  • Fonseca, Bruno M.; Paquete, Catarina M.; Neto, Sónia E.
  • Biochemical Journal, Vol. 449, Issue 1
  • DOI: 10.1042/BJ20121467

Periplasmic Electron Transfer via the c-Type Cytochromes MtrA and FccA of Shewanella oneidensis MR-1
journal, October 2009

  • Schuetz, B.; Schicklberger, M.; Kuermann, J.
  • Applied and Environmental Microbiology, Vol. 75, Issue 24
  • DOI: 10.1128/AEM.01834-09

In situ microbial fuel cell-based biosensor for organic carbon
journal, June 2011


Transforming exoelectrogens for biotechnology using synthetic biology: Synthetic Biology of Exoelectrogens
journal, September 2015

  • TerAvest, Michaela A.; Ajo-Franklin, Caroline M.
  • Biotechnology and Bioengineering, Vol. 113, Issue 4
  • DOI: 10.1002/bit.25723

A simple and rapid method for monitoring dissolved oxygen in water with a submersible microbial fuel cell (SBMFC)
journal, October 2012


CymA and Exogenous Flavins Improve Extracellular Electron Transfer and Couple It to Cell Growth in Mtr-Expressing Escherichia coli
journal, April 2016

  • Jensen, Heather M.; TerAvest, Michaela A.; Kokish, Mark G.
  • ACS Synthetic Biology, Vol. 5, Issue 7
  • DOI: 10.1021/acssynbio.5b00279

Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components
journal, August 2014

  • Pirbadian, S.; Barchinger, S. E.; Leung, K. M.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 35
  • DOI: 10.1073/pnas.1410551111

A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production
journal, March 2010


Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov.
journal, April 1999

  • Venkateswaran, K.; Moser, D. P.; Dollhopf, M. E.
  • International Journal of Systematic Bacteriology, Vol. 49, Issue 2
  • DOI: 10.1099/00207713-49-2-705

Sensors and biosensors for monitoring marine contaminants
journal, May 2015

  • Justino, Celine I. L.; Freitas, Ana C.; Duarte, Armando C.
  • Trends in Environmental Analytical Chemistry, Vol. 6-7
  • DOI: 10.1016/j.teac.2015.02.001

Towards Electrosynthesis in Shewanella: Energetics of Reversing the Mtr Pathway for Reductive Metabolism
journal, February 2011


Engineering of a synthetic electron conduit in living cells
journal, October 2010

  • Jensen, H. M.; Albers, A. E.; Malley, K. R.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 45
  • DOI: 10.1073/pnas.1009645107

Marine Chemical Technology and Sensors for Marine Waters: Potentials and Limits
journal, January 2009


Biosensors and their applications in microbial metabolic engineering
journal, July 2011


Biosensors for marine applications
journal, April 2005


Bacterial Manganese Reduction and Growth with Manganese Oxide as the Sole Electron Acceptor
journal, June 1988


Use of Green Fluorescent Protein To Tag and Investigate Gene Expression in Marine Bacteria
journal, July 1998

  • Stretton, Serina; Techkarnjanaruk, Somkiet; McLennan, Alan M.
  • Applied and Environmental Microbiology, Vol. 64, Issue 7
  • DOI: 10.1128/AEM.64.7.2554-2559.1998

Microbial biosensors
journal, August 2001


Proof of principle for an engineered microbial biosensor based on Shewanella oneidensis outer membrane protein complexes
journal, September 2013


Microbial biosensors: A review
journal, January 2011


Current Production and Metal Oxide Reduction by Shewanella oneidensis MR-1 Wild Type and Mutants
journal, July 2007

  • Bretschger, O.; Obraztsova, A.; Sturm, C. A.
  • Applied and Environmental Microbiology, Vol. 73, Issue 21
  • DOI: 10.1128/AEM.01087-07

Genetically engineered microbial biosensors for in situ monitoring of environmental pollution
journal, November 2010


Electrochemical sensors for environmental monitoring: design, development and applications
journal, January 2004

  • Hanrahan, Grady; Patil, Deepa G.; Wang, Joseph
  • Journal of Environmental Monitoring, Vol. 6, Issue 8
  • DOI: 10.1039/b403975k

Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms
journal, July 2006

  • Gorby, Y. A.; Yanina, S.; McLean, J. S.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 30
  • DOI: 10.1073/pnas.0604517103

A cost-effective and field-ready potentiostat that poises subsurface electrodes to monitor bacterial respiration
journal, February 2012

  • Friedman, Elliot S.; Rosenbaum, Miriam A.; Lee, Alexander W.
  • Biosensors and Bioelectronics, Vol. 32, Issue 1
  • DOI: 10.1016/j.bios.2011.12.013