skip to main content

DOE PAGESDOE PAGES

Title: Dynamic fracture of tantalum under extreme tensile stress

The understanding of fracture phenomena of a material at extremely high strain rates is a key issue for a wide variety of scientific research ranging from applied science and technological developments to fundamental science such as laser-matter interaction and geology. Despite its interest, its study relies on a fine multiscale description, in between the atomic scale and macroscopic processes, so far only achievable by large-scale atomic simulations. Direct ultrafast real-time monitoring of dynamic fracture (spallation) at the atomic lattice scale with picosecond time resolution was beyond the reach of experimental techniques. We show that the coupling between a high-power optical laser pump pulse and a femtosecond x-ray probe pulse generated by an x-ray free electron laser allows detection of the lattice dynamics in a tantalum foil at an ultrahigh strain rate of Embedded Image ~2 × 10 8 to 3.5 × 10 8 s -1. A maximal density drop of 8 to 10%, associated with the onset of spallation at a spall strength of ~17 GPa, was directly measured using x-ray diffraction. The experimental results of density evolution agree well with large-scale atomistic simulations of shock wave propagation and fracture of the sample. Our experimental technique opens a new pathwaymore » to the investigation of ultrahigh strain-rate phenomena in materials at the atomic scale, including high-speed crack dynamics and stress-induced solid-solid phase transitions.« less
Authors:
 [1] ;  [2] ; ORCiD logo [3] ;  [2] ;  [2] ;  [4] ; ORCiD logo [5] ;  [3] ; ORCiD logo [3] ;  [6] ;  [7] ;  [8] ; ORCiD logo [9] ; ORCiD logo [10] ;  [4] ;  [2] ; ORCiD logo [2] ; ORCiD logo [11] ; ORCiD logo [12] ;  [4] more »; ORCiD logo [9] ; ORCiD logo [13] ;  [2] ;  [13] ;  [14] ;  [2] ;  [15] ;  [16] ;  [17] ;  [2] ; ORCiD logo [2] ;  [18] ; ORCiD logo [8] ; ORCiD logo [8] ;  [15] ;  [19] ; ORCiD logo [7] ;  [20] ;  [2] ;  [9] ;  [2] « less
  1. Osaka Univ. (Japan); Pierre and Marie Curie Univ., Paris (France)
  2. Osaka Univ. (Japan)
  3. Dukhov Research Inst. of Automatics, Moscow (Russia); Russian Academy of Sciences (RAS), Moscow (Russian Federation)
  4. Sorbonne Univ., Paris (France)
  5. Osaka Univ. (Japan); Helmholtz-Zentrum Dresden-Rossendorf, (Germany)
  6. Japan Synchreotron Radiation Research Inst., Sayo (Japan); RIKEN Center, Sayo (Japan)
  7. RIKEN Center, Sayo (Japan)
  8. Japan Synchrotron Radiation Research Inst., Sayo (Japan); RIKEN Center, Sayo (Japan)
  9. Japan Synchrotron Radiation Research Inst., Sayo (Japan)
  10. Pierre and Marie Curie Univ., Paris (France); Osaka Univ. (Japan)
  11. SLAC National Accelerator Lab., Menlo Park, CA (United States); European X-ray Free-Electron Laser (XFEL), Schenefeld (Germany)
  12. Dukhov Research Inst. of Automatics, Moscow (Russia)
  13. Okayama Univ., Misasa (Japan)
  14. National Inst. for Materials Science (NIMS), Sayo (Japan). Synchrotron X-ray Station at Spring-8
  15. Hiroshima Univ. (Japan)
  16. Hiroshima Univ. (Japan); Center for High Pressure Science and Technology Advanced Research, Shanghai (China)
  17. Kobe Univ. (Japan)
  18. Ehime Univ., Matsuyama (Japan); Japan Synchrotron Radiation Research Inst., Sayo (Japan)
  19. Pierre and Marie Curie Univ., Paris (France)
  20. RIKEN Center, Sayo (Japan); Osaka Univ. (Japan)
Publication Date:
Grant/Contract Number:
AC02-76SF00515; ID0EPMFM18226; 16-08-01181
Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 3; Journal Issue: 6; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Research Org:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE
OSTI Identifier:
1390704