skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Internally Generated and Externally Forced Multidecadal Oceanic Modes and Their Influence on the Summer Rainfall over East Asia

Abstract

Interdecadal oceanic variabilities can be generated from both internal and external processes, and these variabilities can significantly modulate climate on global and regional scales, including the warming slowdown in the early twenty-first century and rainfall in East Asia. By analyzing simulations from a unique Community Earth System Model (CESM) Large Ensemble (CESM-LE) project, it is shown that the interdecadal Pacific oscillation (IPO) is primarily an internally generated oceanic variability, while the Atlantic multidecadal oscillation (AMO) may be an oceanic variability generated by internal oceanic processes and modulated by external forcing in the twentieth century. Although the observed relationship between IPO and the Yangtze–Huaihe River valley (YHRV) summer rainfall in China is well simulated in both the preindustrial control and the twentieth-century ensemble simulation, none of the twentieth-century ensemble members can reproduce the observed time evolution of both the IPO and YHRV rainfall because of the unpredictable nature of IPO on multidecadal time scales. On the other hand, although CESM-LE cannot reproduce the observed relationship between the AMO and Huanghe River valley (HRV) summer rainfall of China in the preindustrial control simulation, this relationship in the twentieth-century simulations is well reproduced, and the chance of reproducing the observed time evolution ofmore » both AMO and HRV rainfall is about 30%, indicating the important role of the interaction between the internal processes and the external forcing to realistically simulate the AMO and HRV rainfall.« less

Authors:
 [1];  [2]
  1. Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
  2. Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado
Publication Date:
Research Org.:
University Corporation for Atmospheric Research, Boulder, CO (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
OSTI Identifier:
1390662
Alternate Identifier(s):
OSTI ID: 1541838
Grant/Contract Number:  
[FC02-97ER62402]
Resource Type:
Published Article
Journal Name:
Journal of Climate
Additional Journal Information:
[Journal Name: Journal of Climate Journal Volume: 30 Journal Issue: 20]; Journal ID: ISSN 0894-8755
Publisher:
American Meteorological Society
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Meteorology & Atmospheric Sciences

Citation Formats

Si, Dong, and Hu, Aixue. Internally Generated and Externally Forced Multidecadal Oceanic Modes and Their Influence on the Summer Rainfall over East Asia. United States: N. p., 2017. Web. doi:10.1175/JCLI-D-17-0065.1.
Si, Dong, & Hu, Aixue. Internally Generated and Externally Forced Multidecadal Oceanic Modes and Their Influence on the Summer Rainfall over East Asia. United States. doi:10.1175/JCLI-D-17-0065.1.
Si, Dong, and Hu, Aixue. Sun . "Internally Generated and Externally Forced Multidecadal Oceanic Modes and Their Influence on the Summer Rainfall over East Asia". United States. doi:10.1175/JCLI-D-17-0065.1.
@article{osti_1390662,
title = {Internally Generated and Externally Forced Multidecadal Oceanic Modes and Their Influence on the Summer Rainfall over East Asia},
author = {Si, Dong and Hu, Aixue},
abstractNote = {Interdecadal oceanic variabilities can be generated from both internal and external processes, and these variabilities can significantly modulate climate on global and regional scales, including the warming slowdown in the early twenty-first century and rainfall in East Asia. By analyzing simulations from a unique Community Earth System Model (CESM) Large Ensemble (CESM-LE) project, it is shown that the interdecadal Pacific oscillation (IPO) is primarily an internally generated oceanic variability, while the Atlantic multidecadal oscillation (AMO) may be an oceanic variability generated by internal oceanic processes and modulated by external forcing in the twentieth century. Although the observed relationship between IPO and the Yangtze–Huaihe River valley (YHRV) summer rainfall in China is well simulated in both the preindustrial control and the twentieth-century ensemble simulation, none of the twentieth-century ensemble members can reproduce the observed time evolution of both the IPO and YHRV rainfall because of the unpredictable nature of IPO on multidecadal time scales. On the other hand, although CESM-LE cannot reproduce the observed relationship between the AMO and Huanghe River valley (HRV) summer rainfall of China in the preindustrial control simulation, this relationship in the twentieth-century simulations is well reproduced, and the chance of reproducing the observed time evolution of both AMO and HRV rainfall is about 30%, indicating the important role of the interaction between the internal processes and the external forcing to realistically simulate the AMO and HRV rainfall.},
doi = {10.1175/JCLI-D-17-0065.1},
journal = {Journal of Climate},
number = [20],
volume = [30],
place = {United States},
year = {2017},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1175/JCLI-D-17-0065.1

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share: