skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics

Abstract

Tin and lead iodide perovskite semiconductors of the composition AMX3, where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX6 octahedra or by simply contracting the lattice isotropically. The former effect tends to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, wemore » demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. In conclusion, the mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.« less

Authors:
ORCiD logo [1];  [2];  [1]; ORCiD logo [3];  [3];  [3]; ORCiD logo [4]; ORCiD logo [1]
  1. Stanford Univ., Stanford, CA (United States)
  2. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. Hasselt Univ., Diepenbeek (Belgium)
  4. SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1390619
Grant/Contract Number:  
AC02-76SF00515; DGE-1147470; 659225
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 139; Journal Issue: 32; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 14 SOLAR ENERGY

Citation Formats

Prasanna, Rohit, Gold-Parker, Aryeh, Leijtens, Tomas, Conings, Bert, Babayigit, Aslihan, Boyen, Hans -Gerd, Toney, Michael F., and McGehee, Michael D. Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics. United States: N. p., 2017. Web. doi:10.1021/jacs.7b04981.
Prasanna, Rohit, Gold-Parker, Aryeh, Leijtens, Tomas, Conings, Bert, Babayigit, Aslihan, Boyen, Hans -Gerd, Toney, Michael F., & McGehee, Michael D. Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics. United States. doi:10.1021/jacs.7b04981.
Prasanna, Rohit, Gold-Parker, Aryeh, Leijtens, Tomas, Conings, Bert, Babayigit, Aslihan, Boyen, Hans -Gerd, Toney, Michael F., and McGehee, Michael D. Thu . "Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics". United States. doi:10.1021/jacs.7b04981. https://www.osti.gov/servlets/purl/1390619.
@article{osti_1390619,
title = {Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics},
author = {Prasanna, Rohit and Gold-Parker, Aryeh and Leijtens, Tomas and Conings, Bert and Babayigit, Aslihan and Boyen, Hans -Gerd and Toney, Michael F. and McGehee, Michael D.},
abstractNote = {Tin and lead iodide perovskite semiconductors of the composition AMX3, where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX6 octahedra or by simply contracting the lattice isotropically. The former effect tends to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. In conclusion, the mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.},
doi = {10.1021/jacs.7b04981},
journal = {Journal of the American Chemical Society},
number = 32,
volume = 139,
place = {United States},
year = {2017},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 58 works
Citation information provided by
Web of Science

Save / Share:

Works referencing / citing this record:

Small-Band-Gap Halide Double Perovskites
journal, August 2018

  • Slavney, Adam H.; Leppert, Linn; Saldivar Valdes, Abraham
  • Angewandte Chemie International Edition, Vol. 57, Issue 39
  • DOI: 10.1002/anie.201807421

Lead‐Free Tin‐Based Perovskite Solar Cells: Strategies Toward High Performance
journal, May 2019


Constructing moisture-stable hybrid lead iodine semiconductors based on hydrogen-bond-free and dual-iodine strategies
journal, January 2019

  • Liu, Guang-Ning; Zhao, Ruo-Yu; Xu, Rang-Dong
  • Journal of Materials Chemistry C, Vol. 7, Issue 25
  • DOI: 10.1039/c9tc01967g

Small-Band-Gap Halide Double Perovskites
journal, August 2018

  • Slavney, Adam H.; Leppert, Linn; Saldivar Valdes, Abraham
  • Angewandte Chemie, Vol. 130, Issue 39
  • DOI: 10.1002/ange.201807421

Lead‐Free Tin‐Based Perovskite Solar Cells: Strategies Toward High Performance
journal, May 2019


Constructing moisture-stable hybrid lead iodine semiconductors based on hydrogen-bond-free and dual-iodine strategies
journal, January 2019

  • Liu, Guang-Ning; Zhao, Ruo-Yu; Xu, Rang-Dong
  • Journal of Materials Chemistry C, Vol. 7, Issue 25
  • DOI: 10.1039/c9tc01967g

Exciton-band tuning induced by the width of the cation in 2D lead iodide perovskite hybrids
journal, January 2020

  • Tremblay, Marie-Hélène; Bacsa, John; Barlow, Stephen
  • Materials Chemistry Frontiers
  • DOI: 10.1039/d0qm00118j

Interplay of Structural and Optoelectronic Properties in Formamidinium Mixed Tin-Lead Triiodide Perovskites
journal, June 2018

  • Parrott, Elizabeth S.; Green, Thomas; Milot, Rebecca L.
  • Advanced Functional Materials, Vol. 28, Issue 33
  • DOI: 10.1002/adfm.201802803

Highly Efficient Sn/Pb Binary Perovskite Solar Cell via Precursor Engineering: A Two-Step Fabrication Process
journal, December 2018

  • Lian, Xiaomei; Chen, Jiehuan; Zhang, Yingzhu
  • Advanced Functional Materials, Vol. 29, Issue 5
  • DOI: 10.1002/adfm.201807024

Low‐Bandgap Mixed Tin‐Lead Perovskites and Their Applications in All‐Perovskite Tandem Solar Cells
journal, February 2019

  • Wang, Changlei; Song, Zhaoning; Li, Chongwen
  • Advanced Functional Materials, Vol. 29, Issue 47
  • DOI: 10.1002/adfm.201808801

Large-Grain Tin-Rich Perovskite Films for Efficient Solar Cells via Metal Alloying Technique
journal, January 2018

  • Tavakoli, Mohammad Mahdi; Zakeeruddin, Shaik Mohammed; Grätzel, Michael
  • Advanced Materials, Vol. 30, Issue 11
  • DOI: 10.1002/adma.201705998

Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering
journal, June 2018

  • Rajagopal, Adharsh; Yao, Kai; Jen, Alex K. -Y.
  • Advanced Materials, Vol. 30, Issue 32
  • DOI: 10.1002/adma.201800455

Record Efficiency Stable Flexible Perovskite Solar Cell Using Effective Additive Assistant Strategy
journal, July 2018


Integrated Perovskite/Bulk‐Heterojunction Organic Solar Cells
journal, February 2019


Controlling the Growth Kinetics and Optoelectronic Properties of 2D/3D Lead–Tin Perovskite Heterojunctions
journal, November 2019

  • Ruggeri, Edoardo; Anaya, Miguel; Gałkowski, Krzysztof
  • Advanced Materials, Vol. 31, Issue 51
  • DOI: 10.1002/adma.201905247

Greener, Nonhalogenated Solvent Systems for Highly Efficient Perovskite Solar Cells
journal, April 2018

  • Yavari, Mozhgan; Mazloum-Ardakani, Mohammad; Gholipour, Somayeh
  • Advanced Energy Materials, Vol. 8, Issue 21
  • DOI: 10.1002/aenm.201800177

Interfacial Effects of Tin Oxide Atomic Layer Deposition in Metal Halide Perovskite Photovoltaics
journal, June 2018

  • Palmstrom, Axel F.; Raiford, James A.; Prasanna, Rohit
  • Advanced Energy Materials, Vol. 8, Issue 23
  • DOI: 10.1002/aenm.201800591

Lewis-Adduct Mediated Grain-Boundary Functionalization for Efficient Ideal-Bandgap Perovskite Solar Cells with Superior Stability
journal, August 2018

  • Zong, Yingxia; Zhou, Zhongmin; Chen, Min
  • Advanced Energy Materials, Vol. 8, Issue 27
  • DOI: 10.1002/aenm.201800997

Effect of High Dipole Moment Cation on Layered 2D Organic–Inorganic Halide Perovskite Solar Cells
journal, December 2018


Reducing Saturation-Current Density to Realize High-Efficiency Low-Bandgap Mixed Tin-Lead Halide Perovskite Solar Cells
journal, November 2018

  • Li, Chongwen; Song, Zhaoning; Zhao, Dewei
  • Advanced Energy Materials, Vol. 9, Issue 3
  • DOI: 10.1002/aenm.201803135

Vacuum‐Assisted Growth of Low‐Bandgap Thin Films (FA 0.8 MA 0.2 Sn 0.5 Pb 0.5 I 3 ) for All‐Perovskite Tandem Solar Cells
journal, December 2019

  • Abdollahi Nejand, Bahram; Hossain, Ihteaz M.; Jakoby, Marius
  • Advanced Energy Materials, Vol. 10, Issue 5
  • DOI: 10.1002/aenm.201902583

First‐Principles Simulation of Carrier Recombination Mechanisms in Halide Perovskites
journal, April 2020

  • Zhang, Xie; Shen, Jimmy‐Xuan; Van de Walle, Chris G.
  • Advanced Energy Materials, Vol. 10, Issue 13
  • DOI: 10.1002/aenm.201902830

Imaging Metal Halide Perovskites Material and Properties at the Nanoscale
journal, December 2019


Small-Band-Gap Halide Double Perovskites
journal, August 2018

  • Slavney, Adam H.; Leppert, Linn; Saldivar Valdes, Abraham
  • Angewandte Chemie International Edition, Vol. 57, Issue 39
  • DOI: 10.1002/anie.201807421

Bandgap Optimization of Perovskite Semiconductors for Photovoltaic Applications
journal, January 2018

  • Xiao, Zewen; Zhou, Yuanyuan; Hosono, Hideo
  • Chemistry - A European Journal, Vol. 24, Issue 10
  • DOI: 10.1002/chem.201705031

Sn‐Pb Binary Perovskite Films with High Crystalline Quality for High Performance Solar Cells
journal, August 2019

  • Guo, Xuankun; Chen, Jiehuan; Lian, Xiaomei
  • Chinese Journal of Chemistry, Vol. 37, Issue 10
  • DOI: 10.1002/cjoc.201900219

Crystallization, Properties, and Challenges of Low-Bandgap Sn-Pb Binary Perovskites
journal, July 2018


Energy Level Tuning of PEDOT:PSS for High Performance Tin-Lead Mixed Perovskite Solar Cells
journal, November 2018


A Review on Energy Band‐Gap Engineering for Perovskite Photovoltaics
journal, September 2019


Pressures Tuning the Band Gap of Organic–Inorganic Trihalide Perovskites (MAPbBr3): A First-Principles Study
journal, September 2018

  • Tan, Mengping; Wang, Sanjun; Rao, Fengfei
  • Journal of Electronic Materials, Vol. 47, Issue 12
  • DOI: 10.1007/s11664-018-6653-3

Long-lived hot-carrier light emission and large blue shift in formamidinium tin triiodide perovskites
journal, January 2018


Strain engineering in perovskite solar cells and its impacts on carrier dynamics
journal, February 2019


Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors
journal, July 2018


Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability
journal, October 2019


Cs 1−x Rb x SnI 3 light harvesting semiconductors for perovskite photovoltaics
journal, January 2018

  • Marshall, Kenneth P.; Tao, Shuxia; Walker, Marc
  • Materials Chemistry Frontiers, Vol. 2, Issue 8
  • DOI: 10.1039/c8qm00159f

Metal replacement in perovskite solar cell materials: chemical bonding effects and optoelectronic properties
journal, January 2018

  • Pazoki, M.; Edvinsson, T.
  • Sustainable Energy & Fuels, Vol. 2, Issue 7
  • DOI: 10.1039/c8se00143j

Tin–lead halide perovskites with improved thermal and air stability for efficient all-perovskite tandem solar cells
journal, January 2018

  • Leijtens, Tomas; Prasanna, Rohit; Bush, Kevin A.
  • Sustainable Energy & Fuels, Vol. 2, Issue 11
  • DOI: 10.1039/c8se00314a

Direct observation of cation-exchange in liquid-to-solid phase transformation in FA 1−x MA x PbI 3 based perovskite solar cells
journal, January 2018

  • Xie, Yue-Min; Yu, Binbin; Ma, Chunqing
  • Journal of Materials Chemistry A, Vol. 6, Issue 19
  • DOI: 10.1039/c8ta01642a

Impact of cesium on the phase and device stability of triple cation Pb–Sn double halide perovskite films and solar cells
journal, January 2018

  • Tosado, Gabriella A.; Lin, Yi-Yu; Zheng, Erjin
  • Journal of Materials Chemistry A, Vol. 6, Issue 36
  • DOI: 10.1039/c8ta06391e

B-Site doped lead halide perovskites: synthesis, band engineering, photophysics, and light emission applications
journal, January 2019

  • Luo, Binbin; Li, Fei; Xu, Ke
  • Journal of Materials Chemistry C, Vol. 7, Issue 10
  • DOI: 10.1039/c8tc05741a

Band gap engineering and transport properties of Ba 2 In 2 O 5 : effect of fluorine doping and hydration
journal, January 2019

  • Vlasov, Maxim I.; Tarasova, Nataliia A.; Galisheva, Anzhelika O.
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 42
  • DOI: 10.1039/c9cp04551a

Mixed-halide perovskite for ultrasensitive two-terminal artificial synaptic devices
journal, January 2019

  • Yu, Haiyang; Gong, Jiangdong; Wei, Huanhuan
  • Materials Chemistry Frontiers, Vol. 3, Issue 5
  • DOI: 10.1039/c9qm00061e

Atomic layer deposition of vanadium oxide to reduce parasitic absorption and improve stability in n–i–p perovskite solar cells for tandems
journal, January 2019

  • Raiford, James A.; Belisle, Rebecca A.; Bush, Kevin A.
  • Sustainable Energy & Fuels, Vol. 3, Issue 6
  • DOI: 10.1039/c9se00081j

On understanding bandgap bowing and optoelectronic quality in Pb–Sn alloy hybrid perovskites
journal, January 2019

  • Rajagopal, Adharsh; Stoddard, Ryan J.; Hillhouse, Hugh W.
  • Journal of Materials Chemistry A, Vol. 7, Issue 27
  • DOI: 10.1039/c9ta05308e

Approaching the Shockley–Queisser limit for fill factors in lead–tin mixed perovskite photovoltaics
journal, January 2020

  • Jayawardena, K. D. G. I.; Bandara, R. M. I.; Monti, M.
  • Journal of Materials Chemistry A, Vol. 8, Issue 2
  • DOI: 10.1039/c9ta10543c

White light emission in low-dimensional perovskites
journal, January 2019

  • Cortecchia, Daniele; Yin, Jun; Petrozza, Annamaria
  • Journal of Materials Chemistry C, Vol. 7, Issue 17
  • DOI: 10.1039/c9tc01036j

Tin( iv ) dopant removal through anti-solvent engineering enabling tin based perovskite solar cells with high charge carrier mobilities
journal, January 2019

  • Bandara, R. M. I.; Jayawardena, K. D. G. I.; Adeyemo, S. O.
  • Journal of Materials Chemistry C, Vol. 7, Issue 27
  • DOI: 10.1039/c9tc02003a

Attenuating the defect activities with a rubidium additive for efficient and stable Sn-based halide perovskite solar cells
journal, January 2020

  • Khadka, Dhruba B.; Shirai, Yasuhiro; Yanagida, Masatoshi
  • Journal of Materials Chemistry C, Vol. 8, Issue 7
  • DOI: 10.1039/c9tc06206h

Template effects in Cu( i )–Bi( iii ) iodide double perovskites: a study of crystal structure, film orientation, band gap and photocurrent response
journal, January 2020

  • Bi, Le-Yu; Hu, Tian-Li; Li, Mu-Qing
  • Journal of Materials Chemistry A, Vol. 8, Issue 15
  • DOI: 10.1039/d0ta00949k

Band gap tuning of layered III-Te materials
journal, July 2018

  • Olmos-Asar, Jimena Anahí; Rocha Leão, Cedric; Fazzio, Adalberto
  • Journal of Applied Physics, Vol. 124, Issue 4
  • DOI: 10.1063/1.5021259

Structure-controlled optical thermoresponse in Ruddlesden-Popper layered perovskites
journal, November 2018

  • Cortecchia, D.; Neutzner, S.; Yin, J.
  • APL Materials, Vol. 6, Issue 11
  • DOI: 10.1063/1.5045782

Thin‐film solar cells exceeding 22% solar cell efficiency: An overview on CdTe-, Cu(In,Ga)Se 2 -, and perovskite-based materials
journal, December 2018

  • Powalla, Michael; Paetel, Stefan; Ahlswede, Erik
  • Applied Physics Reviews, Vol. 5, Issue 4
  • DOI: 10.1063/1.5061809

Temperature-dependent studies of exciton binding energy and phase-transition suppression in (Cs,FA,MA)Pb(I,Br) 3 perovskites
journal, March 2019

  • Ruf, Fabian; Aygüler, Meltem F.; Giesbrecht, Nadja
  • APL Materials, Vol. 7, Issue 3
  • DOI: 10.1063/1.5083792

Pushing the limit of Cs incorporation into FAPbBr 3 perovskite to enhance solar cells performances
journal, April 2019

  • Sutanto, Albertus A.; Queloz, Valentin I. E.; Garcia-Benito, Inés
  • APL Materials, Vol. 7, Issue 4
  • DOI: 10.1063/1.5087246

Water in hybrid perovskites: Bulk MAPbI 3 degradation via super-hydrous state
journal, April 2019

  • Kakekhani, Arvin; Katti, Radhika N.; Rappe, Andrew M.
  • APL Materials, Vol. 7, Issue 4
  • DOI: 10.1063/1.5087290

Photophysics of lead-free tin halide perovskite films and solar cells
journal, August 2019

  • Handa, Taketo; Wakamiya, Atsushi; Kanemitsu, Yoshihiko
  • APL Materials, Vol. 7, Issue 8
  • DOI: 10.1063/1.5109704

Bowing of transport gap in hybrid halide perovskite alloys (CH 3 NH 3 Sn 1− x Pb x I 3 ): Which band is responsible?
journal, January 2020

  • Khatun, Salma; Maiti, Abhishek; Pal, Amlan J.
  • Applied Physics Letters, Vol. 116, Issue 1
  • DOI: 10.1063/1.5134749

Wide-bandgap, low-bandgap, and tandem perovskite solar cells
journal, July 2019

  • Song, Zhaoning; Chen, Cong; Li, Chongwen
  • Semiconductor Science and Technology, Vol. 34, Issue 9
  • DOI: 10.1088/1361-6641/ab27f7

Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells
journal, April 2019