DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fast automated analysis of strong gravitational lenses with convolutional neural networks

Abstract

Quantifying image distortions caused by strong gravitational lensing—the formation of multiple images of distant sources due to the deflection of their light by the gravity of intervening structures—and estimating the corresponding matter distribution of these structures (the ‘gravitational lens’) has primarily been performed using maximum likelihood modelling of observations. Our procedure is typically time- and resource-consuming, requiring sophisticated lensing codes, several data preparation steps, and finding the maximum likelihood model parameters in a computationally expensive process with downhill optimizers. Accurate analysis of a single gravitational lens can take up to a few weeks and requires expert knowledge of the physical processes and methods involved. Tens of thousands of new lenses are expected to be discovered with the upcoming generation of ground and space surveys. We report the use of deep convolutional neural networks to estimate lensing parameters in an extremely fast and automated way, circumventing the difficulties that are faced by maximum likelihood methods. We also show that the removal of lens light can be made fast and automated using independent component analysis of multi-filter imaging data. Our networks can recover the parameters of the ‘singular isothermal ellipsoid’ density profile, which is commonly used to model strong lensing systems, withmore » an accuracy comparable to the uncertainties of sophisticated models but about ten million times faster: 100 systems in approximately one second on a single graphics processing unit. These networks can provide a way for non-experts to obtain estimates of lensing parameters for large samples of data.« less

Authors:
 [1];  [1];  [1]
  1. Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1390590
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Nature (London)
Additional Journal Information:
Journal Name: Nature (London); Journal Volume: 548; Journal Issue: 7669; Journal ID: ISSN 0028-0836
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; computational astrophysics; cosmology

Citation Formats

Hezaveh, Yashar D., Levasseur, Laurence Perreault, and Marshall, Philip J. Fast automated analysis of strong gravitational lenses with convolutional neural networks. United States: N. p., 2017. Web. doi:10.1038/nature23463.
Hezaveh, Yashar D., Levasseur, Laurence Perreault, & Marshall, Philip J. Fast automated analysis of strong gravitational lenses with convolutional neural networks. United States. https://doi.org/10.1038/nature23463
Hezaveh, Yashar D., Levasseur, Laurence Perreault, and Marshall, Philip J. Wed . "Fast automated analysis of strong gravitational lenses with convolutional neural networks". United States. https://doi.org/10.1038/nature23463. https://www.osti.gov/servlets/purl/1390590.
@article{osti_1390590,
title = {Fast automated analysis of strong gravitational lenses with convolutional neural networks},
author = {Hezaveh, Yashar D. and Levasseur, Laurence Perreault and Marshall, Philip J.},
abstractNote = {Quantifying image distortions caused by strong gravitational lensing—the formation of multiple images of distant sources due to the deflection of their light by the gravity of intervening structures—and estimating the corresponding matter distribution of these structures (the ‘gravitational lens’) has primarily been performed using maximum likelihood modelling of observations. Our procedure is typically time- and resource-consuming, requiring sophisticated lensing codes, several data preparation steps, and finding the maximum likelihood model parameters in a computationally expensive process with downhill optimizers. Accurate analysis of a single gravitational lens can take up to a few weeks and requires expert knowledge of the physical processes and methods involved. Tens of thousands of new lenses are expected to be discovered with the upcoming generation of ground and space surveys. We report the use of deep convolutional neural networks to estimate lensing parameters in an extremely fast and automated way, circumventing the difficulties that are faced by maximum likelihood methods. We also show that the removal of lens light can be made fast and automated using independent component analysis of multi-filter imaging data. Our networks can recover the parameters of the ‘singular isothermal ellipsoid’ density profile, which is commonly used to model strong lensing systems, with an accuracy comparable to the uncertainties of sophisticated models but about ten million times faster: 100 systems in approximately one second on a single graphics processing unit. These networks can provide a way for non-experts to obtain estimates of lensing parameters for large samples of data.},
doi = {10.1038/nature23463},
journal = {Nature (London)},
number = 7669,
volume = 548,
place = {United States},
year = {Wed Aug 30 00:00:00 EDT 2017},
month = {Wed Aug 30 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 138 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Third Gravitational Lensing Accuracy Testing (GREAT3) Challenge Handbook
text, January 2013


ImageNet Large Scale Visual Recognition Challenge
text, January 2015

  • Jia, Deng,; Andrej, Karpathy,; Sean, Ma,
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/009h-3a34

Galaxy Zoo: morphological classifications for 120 000 galaxies in HST legacy imaging
journal, October 2016

  • Willett, Kyle W.; Galloway, Melanie A.; Bamford, Steven P.
  • Monthly Notices of the Royal Astronomical Society, Vol. 464, Issue 4
  • DOI: 10.1093/mnras/stw2568

A Bayesian analysis of regularized source inversions in gravitational lensing
journal, September 2006


Finding strong lenses in CFHTLS using convolutional neural networks
text, January 2017


The sl2s Galaxy-Scale lens Sample. iii. lens Models, Surface Photometry, and Stellar Masses for the Final Sample
journal, October 2013

  • Sonnenfeld, Alessandro; Gavazzi, Raphaël; Suyu, Sherry H.
  • The Astrophysical Journal, Vol. 777, Issue 2
  • DOI: 10.1088/0004-637X/777/2/97

ImageNet Large Scale Visual Recognition Challenge
journal, April 2015

  • Russakovsky, Olga; Deng, Jia; Su, Hao
  • International Journal of Computer Vision, Vol. 115, Issue 3
  • DOI: 10.1007/s11263-015-0816-y

Approximation by superpositions of a sigmoidal function
journal, December 1989

  • Cybenko, G.
  • Mathematics of Control, Signals, and Systems, Vol. 2, Issue 4
  • DOI: 10.1007/BF02551274

Unreasonable effectiveness of learning neural networks: From accessible states and robust ensembles to basic algorithmic schemes
journal, November 2016

  • Baldassi, Carlo; Borgs, Christian; Chayes, Jennifer T.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 48
  • DOI: 10.1073/pnas.1608103113

The sl2s Galaxy-Scale lens Sample. v. dark Matter Halos and Stellar imf of Massive Early-Type Galaxies out to Redshift 0.8
journal, February 2015

  • Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.
  • The Astrophysical Journal, Vol. 800, Issue 2
  • DOI: 10.1088/0004-637X/800/2/94

A Bayesian analysis of regularized source inversions in gravitational lensing
journal, September 2006


The SL2S Galaxy-scale Lens Sample. III. Lens Models, Surface Photometry and Stellar Masses for the final sample
text, January 2013


Lens Models and Magnification maps of the six Hubble Frontier Fields Clusters
journal, November 2014

  • Johnson, Traci L.; Sharon, Keren; Bayliss, Matthew B.
  • The Astrophysical Journal, Vol. 797, Issue 1
  • DOI: 10.1088/0004-637X/797/1/48

The Third Gravitational Lensing Accuracy Testing (Great3) Challenge Handbook
journal, April 2014

  • Mandelbaum, Rachel; Rowe, Barnaby; Bosch, James
  • The Astrophysical Journal Supplement Series, Vol. 212, Issue 1
  • DOI: 10.1088/0067-0049/212/1/5

Lens models and magnification maps of the six Hubble Frontier Fields clusters
text, January 2014


Finding strong lenses in CFHTLS using convolutional neural networks
journal, June 2017

  • Jacobs, C.; Glazebrook, K.; Collett, T.
  • Monthly Notices of the Royal Astronomical Society, Vol. 471, Issue 1
  • DOI: 10.1093/mnras/stx1492

Galaxy Zoo: Morphological Classifications for 120,000 Galaxies in HST Legacy Imaging
text, January 2016


The Sloan Lens ACS Survey. V. The Full ACS Strong‐Lens Sample
journal, August 2008

  • Bolton, Adam S.; Burles, Scott; Koopmans, Léon V. E.
  • The Astrophysical Journal, Vol. 682, Issue 2
  • DOI: 10.1086/589327

A Bayesian analysis of regularised source inversions in gravitational lensing
text, January 2006


A Systematic Review of Strong Gravitational Lens Modeling Software
text, January 2012


Semilinear Gravitational Lens Inversion
journal, June 2003

  • Warren, S. J.; Dye, S.
  • The Astrophysical Journal, Vol. 590, Issue 2
  • DOI: 10.1086/375132

Approximation by superpositions of a sigmoidal function
journal, December 1992

  • Cybenko, G.
  • Mathematics of Control, Signals, and Systems, Vol. 5, Issue 4
  • DOI: 10.1007/bf02134016

A systematic review of strong gravitational lens modeling software
journal, July 2013


The Population of Galaxy–Galaxy Strong Lenses in Forthcoming Optical Imaging Surveys
journal, September 2015


CMU DeepLens: deep learning for automatic image-based galaxy–galaxy strong lens finding
journal, July 2017

  • Lanusse, François; Ma, Quanbin; Li, Nan
  • Monthly Notices of the Royal Astronomical Society, Vol. 473, Issue 3
  • DOI: 10.1093/mnras/stx1665

Enabling Dark Energy Science with Deep Generative Models of Galaxy Images
journal, February 2017

  • Ravanbakhsh, Siamak; Lanusse, Francois; Mandelbaum, Rachel
  • Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 31, Issue 1
  • DOI: 10.1609/aaai.v31i1.10755

Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
journal, February 2017

  • Szegedy, Christian; Ioffe, Sergey; Vanhoucke, Vincent
  • Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 31, Issue 1
  • DOI: 10.1609/aaai.v31i1.11231

Works referencing / citing this record:

Probing the universe with citizen science and gravitational lensing
dissertation, January 2017


Deep learning predictions of galaxy merger stage and the importance of observational realism
journal, October 2019

  • Bottrell, Connor; Hani, Maan H.; Teimoorinia, Hossen
  • Monthly Notices of the Royal Astronomical Society, Vol. 490, Issue 4
  • DOI: 10.1093/mnras/stz2934

Neural network-based anomaly detection for high-resolution X-ray spectroscopy
journal, June 2019

  • Ichinohe, Y.; Yamada, S.
  • Monthly Notices of the Royal Astronomical Society, Vol. 487, Issue 2
  • DOI: 10.1093/mnras/stz1528

Deep-CEE I: fishing for galaxy clusters with deep neural nets
journal, October 2019

  • Chan, Matthew C.; Stott, John P.
  • Monthly Notices of the Royal Astronomical Society, Vol. 490, Issue 4
  • DOI: 10.1093/mnras/stz2936

X-ray Study of Spatial Structures in Tycho's Supernova Remnant Using Unsupervised Deep Learning
text, January 2019


Deep learning predictions of galaxy merger stage and the importance of observational realism
text, January 2019


Searching for Subsecond Stellar Variability with Wide-field Star Trails and Deep Learning
journal, November 2018


Galaxy Zoo: probabilistic morphology through Bayesian CNNs and active learning
journal, October 2019

  • Walmsley, Mike; Smith, Lewis; Lintott, Chris
  • Monthly Notices of the Royal Astronomical Society, Vol. 491, Issue 2
  • DOI: 10.1093/mnras/stz2816

Optical Deep Learning Nano-Profilometry
text, January 2019


Finding high-redshift strong lenses in DES using convolutional neural networks
text, January 2018


Wat zei je? Detecting Out-of-Distribution Translations with Variational Transformers
preprint, January 2020


Learning to Predict the Cosmological Structure Formation
text, January 2018


Using convolutional neural networks to predict galaxy metallicity from three-colour images
journal, February 2019

  • Wu, John F.; Boada, Steven
  • Monthly Notices of the Royal Astronomical Society, Vol. 484, Issue 4
  • DOI: 10.1093/mnras/stz333

Radio Galaxy Zoo: Claran – a deep learning classifier for radio morphologies
journal, October 2018

  • Wu, Chen; Wong, Oiwei Ivy; Rudnick, Lawrence
  • Monthly Notices of the Royal Astronomical Society, Vol. 482, Issue 1
  • DOI: 10.1093/mnras/sty2646

Discovery of CDK4 inhibitors by convolutional neural networks
journal, February 2019

  • Xu, Yinqiu; Chen, Pingping; Lin, Xinhao
  • Future Medicinal Chemistry, Vol. 11, Issue 3
  • DOI: 10.4155/fmc-2018-0478

A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists
journal, November 2018


Phased microphone array for sound source localization with deep learning
journal, May 2019


Lessons from a blind study of simulated lenses: image reconstructions do not always reproduce true convergence
text, January 2019


Automated Assignment of Rotational Spectra Using Artificial Neural Networks
conference, June 2018

  • Zaleski, Daniel; Prozument, Kirill
  • Proceedings of the 73rd International Symposium on Molecular Spectroscopy
  • DOI: 10.15278/isms.2018.th01

Mining for Dark Matter Substructure: Inferring Subhalo Population Properties from Strong Lenses with Machine Learning
journal, November 2019

  • Brehmer, Johann; Mishra-Sharma, Siddharth; Hermans, Joeri
  • The Astrophysical Journal, Vol. 886, Issue 1
  • DOI: 10.3847/1538-4357/ab4c41

Deep learning reconstruction of ultrashort pulses
journal, January 2018


Image Simulations for Strong and Weak Gravitational Lensing
journal, March 2020


A Bayesian neural network predicts the dissolution of compact planetary systems
text, January 2021


Neural network-based preprocessing to estimate the parameters of the X-ray emission of a single-temperature thermal plasma
journal, February 2018

  • Ichinohe, Y.; Yamada, S.; Miyazaki, N.
  • Monthly Notices of the Royal Astronomical Society, Vol. 475, Issue 4
  • DOI: 10.1093/mnras/sty161

Galaxy Zoo: Probabilistic Morphology through Bayesian CNNs and Active Learning
text, January 2019


Learning to predict the cosmological structure formation
journal, June 2019

  • He, Siyu; Li, Yin; Feng, Yu
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 28
  • DOI: 10.1073/pnas.1821458116

Machine Learning Detection of Bell Nonlocality in Quantum Many-Body Systems
journal, June 2018


A Modular Deep Learning Pipeline for Galaxy-Scale Strong Gravitational Lens Detection and Modeling
preprint, January 2019


Seeing permeability from images: fast prediction with convolutional neural networks
journal, September 2018


Phased microphone array for sound source localization with deep learning
journal, May 2019


Machine learning and the physical sciences
journal, December 2019


Deep Learning Reconstruction of Ultra-Short Pulses
preprint, January 2018


A new era in the search for dark matter
journal, October 2018


Lessons from a blind study of simulated lenses: image reconstructions do not always reproduce true convergence
journal, January 2020

  • Denzel, Philipp; Mukherjee, Sampath; Coles, Jonathan P.
  • Monthly Notices of the Royal Astronomical Society, Vol. 492, Issue 3
  • DOI: 10.1093/mnras/staa108

Direct detection of dark matter substructure in strong lens images with convolutional neural networks
journal, January 2020


SWIRL: High-performance many-core CPU code generation for deep neural networks
journal, May 2019

  • Venkat, Anand; Rusira, Tharindu; Barik, Raj
  • The International Journal of High Performance Computing Applications, Vol. 33, Issue 6
  • DOI: 10.1177/1094342019866247

An Extended Catalog of Galaxy–Galaxy Strong Gravitational Lenses Discovered in DES Using Convolutional Neural Networks
journal, July 2019

  • Jacobs, C.; Collett, T.; Glazebrook, K.
  • The Astrophysical Journal Supplement Series, Vol. 243, Issue 1
  • DOI: 10.3847/1538-4365/ab26b6

Learning to predict the cosmological structure formation
journal, June 2019

  • He, Siyu; Li, Yin; Feng, Yu
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 28
  • DOI: 10.1073/pnas.1821458116

Machine learning meets quantum foundations: A brief survey
journal, October 2020

  • Bharti, Kishor; Haug, Tobias; Vedral, Vlatko
  • AVS Quantum Science, Vol. 2, Issue 3
  • DOI: 10.1116/5.0007529

Regularized pseudo-phase imaging for inspecting and sensing nanoscale features
journal, January 2019

  • Zhu, Jinlong; Zhou, Renjie; Zhang, Lenan
  • Optics Express, Vol. 27, Issue 5
  • DOI: 10.1364/oe.27.006719

Automated assignment of rotational spectra using artificial neural networks
journal, September 2018

  • Zaleski, Daniel P.; Prozument, Kirill
  • The Journal of Chemical Physics, Vol. 149, Issue 10
  • DOI: 10.1063/1.5037715

Genetic-algorithm-optimized neural networks for gravitational wave classification
text, January 2020


X-ray study of spatial structures in Tycho’s supernova remnant using unsupervised deep learning
journal, July 2019

  • Iwasaki, Hiroyoshi; Ichinohe, Yuto; Uchiyama, Yasunobu
  • Monthly Notices of the Royal Astronomical Society, Vol. 488, Issue 3
  • DOI: 10.1093/mnras/stz1990

Dark Matter Subhalos, Strong Lensing and Machine Learning
preprint, January 2020


Nuclear liquid-gas phase transition with machine learning
journal, November 2020


Scientific intuition inspired by machine learning-generated hypotheses
journal, April 2021

  • Friederich, Pascal; Krenn, Mario; Tamblyn, Isaac
  • Machine Learning: Science and Technology, Vol. 2, Issue 2
  • DOI: 10.1088/2632-2153/abda08

Is every strong lens model unhappy in its own way? Uniform modelling of a sample of 13 quadruply+ imaged quasars
journal, December 2018

  • Shajib, A. J.; Birrer, S.; Treu, T.
  • Monthly Notices of the Royal Astronomical Society, Vol. 483, Issue 4
  • DOI: 10.1093/mnras/sty3397

Finding high-redshift strong lenses in DES using convolutional neural networks
journal, January 2019

  • Jacobs, C.; Collett, T.; Glazebrook, K.
  • Monthly Notices of the Royal Astronomical Society, Vol. 484, Issue 4
  • DOI: 10.1093/mnras/stz272

Data-driven Reconstruction of Gravitationally Lensed Galaxies Using Recurrent Inference Machines
journal, September 2019

  • Morningstar, Warren R.; Levasseur, Laurence Perreault; Hezaveh, Yashar D.
  • The Astrophysical Journal, Vol. 883, Issue 1
  • DOI: 10.3847/1538-4357/ab35d7

Reconstructing Functions and Estimating Parameters with Artificial Neural Networks: A Test with a Hubble Parameter and SNe Ia
journal, January 2020

  • Wang, Guo-Jian; Ma, Xiao-Jiao; Li, Si-Yao
  • The Astrophysical Journal Supplement Series, Vol. 246, Issue 1
  • DOI: 10.3847/1538-4365/ab620b

Hunting for Dark Matter Subhalos in Strong Gravitational Lensing with Neural Networks
preprint, January 2020


Quasar microlensing light-curve analysis using deep machine learning
journal, April 2019

  • Vernardos, Georgios; Tsagkatakis, Grigorios
  • Monthly Notices of the Royal Astronomical Society, Vol. 486, Issue 2
  • DOI: 10.1093/mnras/stz868

Fast point spread function modeling with deep learning
journal, July 2018

  • Herbel, Jörg; Kacprzak, Tomasz; Amara, Adam
  • Journal of Cosmology and Astroparticle Physics, Vol. 2018, Issue 07
  • DOI: 10.1088/1475-7516/2018/07/054